hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy saving, indoor thermal comfort and indoor air quality evaluation of an office environment using corner impinging jet ventilation
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.ORCID iD: 0000-0002-8349-6659
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.ORCID iD: 0000-0003-2023-689x
Osaka University, Japan..
Osaka University, Japan..
Show others and affiliations
2023 (English)In: Developments in the Built Environment, ISSN 2666-1659, Vol. 15, article id 100179Article in journal (Refereed) Published
Abstract [en]

The performance of a corner based impinging jet ventilation system (CIJV) in an office environment was evaluated numerically. The evaluation was done both in terms of the local thermal comfort and the local indoor air quality. Three different inlet configurations were tested for a range of outdoor temperatures that included both winter and summer conditions. In terms of indoor air quality, the results showed that CIJV performed better than a traditional mixing system. The study also revealed that CIJV creates a stronger temperature stratification in summertime compared to wintertime. When evaluating the energy saving potential the results showed a possible reduction of 7% for the ventilation flowrate when the outdoor temperatures were between -15 °C and -5 °C, 8 % when the outdoor temperatures were between 0 °C and 10 °C and 9 % when the outdoor temperatures were between 15 °C and 25 °C.

Place, publisher, year, edition, pages
Elsevier , 2023. Vol. 15, article id 100179
Keywords [en]
Corner impinging jet ventilation, Computational fluid dynamic, Thermal comfort, Indoor air quality, Energy saving
National Category
Energy Systems
Research subject
Sustainable Urban Development
Identifiers
URN: urn:nbn:se:hig:diva-41938DOI: 10.1016/j.dibe.2023.100179ISI: 001054802900001Scopus ID: 2-s2.0-85161659218OAI: oai:DiVA.org:hig-41938DiVA, id: diva2:1761847
Available from: 2023-06-02 Created: 2023-06-02 Last updated: 2024-04-15Bibliographically approved
In thesis
1. Experimental and numerical study of corner impinging jet ventilation for an office environment
Open this publication in new window or tab >>Experimental and numerical study of corner impinging jet ventilation for an office environment
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

An effective ventilation system is an important component of a building’s service infrastructure. It serves the dual purpose of creating a comfortable and healthy indoor environment for occupants, thereby enhancing their well-being and productivity. However, the ventilation system is also a part of the building that uses a high amount of energy.

The main objective of this study is to evaluate a novel implementation of the impinging jet ventilation system by placing the supply inlet at the corners of the space or room, rather than in the traditional mid-wall section. The focus of this study is to test and evaluate corner impinging jet ventilation in a medium-sized office environment within a building that requires moderate amount of heating and cooling.

In the first part of this study (summer condition), the system is evaluated in an experimental environment, where it is compared against other systems such as displacement ventilation and mixing ventilation. The evaluated parameters indicates that corner impinging ventilation system performs better than mixing ventilation but show similar results to displacement ventilation in terms of airchange effectiveness. This experimental setup was also tested in winter condition and the results showed that the system was most effective during summertime compared to wintertime. In wintertime the results for the air change effectiveness were similar to those of a mixing system.

In the second part, numerical simulations were utilized to delve deeper into the behaviour of the corner impinging jet ventilation system close to the floor surface. A numerical model was created and validated against experimental measurements. In this part, the spreading of the air jet across the room floor was examined, and its relation to various parameters such as inlet velocity, inlet shape and discharge height. Results indicated that diffuser geometries have almost no impact on velocity profile along the floor's centreline, jet spreading rate and maximum velocity decay. The results also showed a high degree of flexibility for the room size, between 25-100 m2 for which the results were applicable. The results also concluded that there was a noticeable confinement effect present and that the jet was able to travel far into the room.

In the third part numerical simulations was used for validating and to create a model for an office room containing two office workstations. The office room was evaluated in terms of local thermal comfort, close to the sitting area. In addition, the indoor air quality was also examined. The results showed that corner impinging ventilation system performed better than conventional mixing ventilation system, especially when evaluating the indoor air quality in terms of mean age of air. This evaluation also took into account both outdoor summer and winter conditions, as well as different inlet surface areas. Different locations for the workstations were also evaluated with good results, except for placing the work-stations close to the inlets. Due to the system’s effectiveness of providing fresh air to the occupants, further analysis was made to try and reduce the air flowrate but keep the same indoor air quality level as an equivalent fully mixing ventilation system. By using this method, the study was able to demonstrate reduction in the energy use by reducing the air flowrate of the supply inlet. The study showed a possible reduction of the energy use by 7-9 % for outdoor temperatures ranging between -15 °C to 25 °C.

Abstract [sv]

Ett effektivt ventilationssystem är en viktig komponent i en byggnads serviceinfrastruktur. Den tjänar det dubbla syftet att skapa en bekväm och hälsosam inomhusmiljö för de boende, därigenom förbättrande deras välbefinnande och produktivitet. Dock är ventilationssystemet också en del av byggnaden som använder en hög andel energi.

Den huvudsakliga målsättningen med denna studie är att utvärdera en ny implementering av impinging jet ventilationssystem genom att placera inloppen i hörnen av rummet, i stället för den traditionella mellanväggsektionen. Fokus för denna studie är att testa och utvärdera corner impinging jet ventilation (CIJV) i en medelstor kontorsmiljö i en byggnad som kräver måttlig uppvärmning och kylning.

I den första delen av denna studie utvärderas systemet i en experimentell miljö, där det jämförs med andra system såsom deplacerade ventilation och omblandad ventilation för sommar fall. De utvärderade parametrarna indikerar att CIJV presterar bättre än omblandad ventilation men visar liknande resultat som deplacerad ventilationssystem när det gäller luftväxlingseffektivitet. Denna experimentella uppställning testades också under vinterförhållanden och resultaten visade att systemet var mest effektivt under sommartiden jämfört med vintertiden. Under vintertiden var resultaten för luftväxlingseffektiviteten liknande de för omblandande ventilationssystem.

I den andra delen användes numeriska simuleringar för att fördjupa förståelsen av CIJVs beteende nära golvytan. En numerisk modell skapades och validerades mot experimentella mätningar. I den här delen granskades spridningen av luftstrålen över golvet och dess relation till olika parametrar som tilluftshastighet, ventilationsdonet geometri och ventilationsdonets höjd över golvytan. Resultaten indikerade att ventilationsdonet geometri har en marginell inverkan på hastighetsutvecklingen längs golvvägens mittlinje, maximal hastighetsminskning och strålens spridningshastighet. Resultaten visade också en hög grad av flexibilitet när det gäller rumsstorlek, mellan 25–100m2 för vilka resultaten var tillämpliga. Resultaten konstaterade också att det fanns en märkbar restriktionseffekt närvarande och att strålen kunde färdas långt in i rummet.

I den tredje delen användes numeriska simuleringar i en kontorsmiljö med två arbetsstationer. Kontorsrummet utvärderades både när det gällde den lokaltermisk komforten och luftkvalitén inomhus. Resultaten visade att CIJV presterade bättre än ett konventionellt omblandande system, särskilt när man utvärderade luftkvalitén med avseende på luftens medelålder. Utvärderingen beaktade också både utomhusförhållanden på sommaren och vintern samt olika flödeshastigheter. Olika platser för arbetsstationerna utvärderades också med goda resultat, förutom att när arbetsstationerna placerades nära inloppen.

På grund av systemets effektivitet när det gäller att förse frisk luft till kontorsarbetarna gjordes en ytterligare analys för att försöka minska luftflödet men behålla samma nivå av luftkvalitén som ett motsvarande omblandande system. Genom att använda denna metod kunde studien visa på en minskning i energiförbrukningen genom att minska luftflödet för tilluften med 7-9 % för utomhustemperaturer som sträckte sig från -15 °C till 25 °C.

Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2024. p. 87
Series
Doctoral thesis ; 47
Keywords
corner impinging jet, ventilation, thermal comfort, mean age of air, indoor air quality, corner impinging jet, ventilation, termisk komfort, genomsnittslig luftålder, inomhusluftkvalitet
National Category
Energy Systems
Identifiers
urn:nbn:se:hig:diva-44058 (URN)978-91-89593-34-3 (ISBN)978-91-89593-35-0 (ISBN)
Public defence
2024-06-14, 12:108, Kungsbäcksvägen 47, Gävle, 09:00
Opponent
Supervisors
Available from: 2024-05-22 Created: 2024-04-15 Last updated: 2024-05-22Bibliographically approved

Open Access in DiVA

fulltext(7746 kB)221 downloads
File information
File name FULLTEXT01.pdfFile size 7746 kBChecksum SHA-512
bf204a09e3c239b689363238fada60936e83f355994ff166564505f5a5672335743a165368ccf73422a6657f2522094fd311130ea0d88d9ca60a2237085805a8
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Ameen, ArmanCehlin, MathiasKarimipanah, Taghi

Search in DiVA

By author/editor
Ameen, ArmanCehlin, MathiasKarimipanah, Taghi
By organisation
Energy Systems and Building Technology
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 222 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 667 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf