hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Basic building life cycle calculations to decrease contribution to climate change: Case study on an office building in Sweden  
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering.
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering.
Royal Institute of Technology, Division of Environmental Strategies Research, Department of Urban Studies, School of Architecture and the Built Environment, Stockholm.
2011 (English)In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 46, no 10, p. 1863-1871Article in journal (Refereed) Published
Abstract [en]

This study examined whether simplified life cycle-based calculations of climate change contributions can provide better decision support for building design. Contributions to climate change from a newly built office building in Gävle, Sweden, were studied from a life cycle perspective as a basis for improvements. A basic climate and energy calculation tool for buildings developed in the European project ENSLIC was used. The study also examined the relative impacts from building material production and building operation, as well as the relative importance of the impact contributions from these two life cycle stages at various conditions.

The ENSLIC tool calculates operational energy use and contributions to climate change of a number of optional improvement measures. Twelve relevant improvement measures were tested. The most important measures proved to be changing to CO2 free electricity, changing construction slabs from concrete to wood, using windows with better U-values, insulating the building better and installing low-energy lighting and white goods. Introduction of these measures was estimated to reduce the total contribution to climate change by nearly 50% compared with the original building and the operational energy use by nearly 20% (from 100 to 81 kWh/m2 yr). Almost every building is unique and situated in a specific context. Making simple analyses of different construction options showed to be useful and gave some unexpected results which were difficult to foresee from a general design experience. This process acts as an introduction to life cycle thinking and highlights the consequence of different material choices.

Place, publisher, year, edition, pages
Elsevier , 2011. Vol. 46, no 10, p. 1863-1871
Keywords [en]
Building design; Climate change; CO2 emissions; Life cycle tool; Energy use; Materials impact
National Category
Building Technologies
Identifiers
URN: urn:nbn:se:hig:diva-10196DOI: 10.1016/j.buildenv.2011.02.003ISI: 000292223900001Scopus ID: 2-s2.0-79956355058OAI: oai:DiVA.org:hig-10196DiVA, id: diva2:442473
Available from: 2011-09-21 Created: 2011-09-21 Last updated: 2018-03-13Bibliographically approved
In thesis
1. Environmental Assessment of Buildings and the influence on architectural design
Open this publication in new window or tab >>Environmental Assessment of Buildings and the influence on architectural design
2010 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This licentiate thesis examines environmental assessment tools for buildings. This is done by investigating, analysing, comparing and testing how different environmental assessment tools measure the environmental performance of buildings and examining the consequences this may have on architectural design.

The study begins by analysing three environmental assessment tools: LEED, CSH and EcoEffect. These tools are then tested on a case study building (an eight-storey residential building) to analyse differences regarding assessment results, improvement proposals and potential impacts on architectural design.

One of the environmental impacts assessed in the three tools, namely Climate Change caused by gases having Global Warming Potential (GWP), is then analysed in greater detail from a life cycle perspective by measuring CO2-equivalents (CO2-eq). A basic calculation tool (referred to as the ENSLIC tool), based on life cycle assessment methodology, is used to assess a case study building (a four-storey office building in Gävle). The impact of the building on CO2-eq emissions is calculated and the impact of a number of suggested building improvements and changes of energy sources is analysed. 

The studies show the complexity of assessment tools and different ways to make comparisons. Both similarities and differences between the tools are apparent, regarding hierarchical structure and also on each hierarchical level, from categories to issues and parameters. It is also shown that the choice of environmental assessment tool may have an influence on the architectural design of buildings.

The difficulty with assessing complex buildings is apparent even when only one environmental issue is assessed with the LCA-based ENSLIC tool. Many aspects influence the assessment result. These include energy use, choice of materials and choice of energy sources.

The complexity and difficulty in linking buildings to environmental impact create a need for interactive tools measuring environmental performance, which can be useful as decision support in the early design phase.

Abstract [sv]

Denna licentiatavhandling behandlar miljöbedömningsmetoder för byggnader. Arbetet bygger på undersökningar analyser, jämförelser och tester av hur miljöbedömningsmetoder bedömer byggnaders miljöprestanda och undersöker även vilka konsekvenser som detta kan ha på arkitektonisk utformning.

Forskningen börjar med att tre miljöbedömningsmetoder, LEED; Code for Sustainble Homes (CSH) och EcoEffect analyseras och jämförs. Sedan genomfös en fallstudie där de tre metoderna testades på ett bostadshus (ett åttavåningar högt bostadshus i Stockholm). Skillnader gällande miljöbedömningsresultat och miljöbedömningmetodernas förslag på förbättringsåtgärder samt eventuell påverkan på den arkitektoniska utformningen analyseras och diskuteras.

En av miljöpåverkanskategorierna som bedöms i de tre metoderna, klimatpåverkan orsakad av gaser med inverkan på den globala uppvärmningen, analyseras sedan mer i detalj utifrån ett livscykelperspektiv genom att mäta byggnaders koldioxidekvivalenter (CO2 ekv). Ett förenklat beräkningsverktyg (som här benämns ENSLIC-verktyget), som är baserat på livscykelmetodik, används för att studera en byggnad (ett fyra våningar högt kontorshus i Gävle). Sedan beräknas byggnadens påverkan på CO2 ekv. Effekten av ett flertal föreslagna förbättringsåtgärder på byggnaden samt byte av energikällor analyseras också.

Studierna visar på miljöbedömningmetodernas komplexitet och presenterar olika sätt att göra jämförelser på. Skillnader och likheter mellan metoderna påvisas, gällande hierarkisk struktur och även på varje hierarkisk nivå, från kategorier till enskilda bedömda frågor och parametrar. Dessa skillnader talar för att olika metoder kan påverka den arkitektoniska utformningen av byggnader.

Svårigheten i att bedöma komplexa byggnader belyses även när endast en miljöpåverkan bedöms med det LCA baserade ENSLIC-verktyget. Många saker påverkar resultatet, framförallt energianvändning tillsammans med materialanvändning och val av energikällor. Den komplexa och svåra uppgiften att länka samman byggnader med deras miljöpåverkan öppnar upp för användande av interaktiva verktyg som mäter miljöpåverkan som kan användas som beslutshjälpmedel i tidiga designskeden.

Place, publisher, year, edition, pages
Stockholm: E-print AB, 2010. p. 64
National Category
Engineering and Technology
Identifiers
urn:nbn:se:hig:diva-10197 (URN)978-91-7415-804-5 (ISBN)
Presentation
2010-12-15, KTH, Sal E2, Lindstedtsvägen 3, Stockholm, 16:02 (Swedish)
Opponent
Supervisors
Available from: 2011-09-22 Created: 2011-09-21 Last updated: 2018-03-13Bibliographically approved
2. Environmental Assessment Tools for Neighbourhoods and Buildings in relation to Environment, Architecture, and Architects
Open this publication in new window or tab >>Environmental Assessment Tools for Neighbourhoods and Buildings in relation to Environment, Architecture, and Architects
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis explores Neighbourhood and Building Environmental Assessment Tools’ (NBEATs’) function as assessment tools and decision support, and their relation to environment, architecture and architects. This is done by analysing, testing, and discussing a number of NBEATs (LEED-NC, Code for Sustainable Homes, EcoEffect, LEED-ND, BREEAM-C, and ENSLIC-tool), their manuals and use. Moreover, professionals’ (architects’) self-rated opinions regarding use and knowledge of NBEATs and environmental aspects are surveyed.

Similarities and differences in NBEATs are found regarding: content, structure, weighting and indicators used. Indicators distinguished as procedure, performance and feature are used to varying extents to assess social, environmental and technical aspects. NBEATs relation to environmental sustainability has limitations due to: non-transparency, tradable indicators, relative measures, low criteria levels, limited life cycle perspective, and exclusion of relevant environmental aspects, such as embedded toxic substances, nutrient cycles, land use change, and ecosystem services. Ratings and architecture are influenced by NBEATs in varying ways. Higher criteria levels would probably increase their impact on architecture. Thus more research regarding NBEATs and links to architectural design, theory and practice is welcomed.

There is limited use of NBEATs as decision support in early design phases such as in architectural competitions. Architects rate the importance of environmental aspects high, but few rate their skill in handling environmental aspects high. This calls for increasing knowledge and know-how of environmental strategies and solutions among architects and adaptation of NBEATs to early design processes. The values NBEATs reflect and the values we want them to create is also important. To support ‘environmental’ architecture, an increased socio-eco-technological system perspective is put forward, and other measures besides NBEATs are needed.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. p. 112
Series
TRITA-INFRA-FMS-PHD ; 2016:5
Keywords
architects, architecture, buildings, environment, environmental assessment tools, environmental sustainability, neighbourhoods
National Category
Environmental Analysis and Construction Information Technology
Research subject
Planning and Decision Analysis
Identifiers
urn:nbn:se:hig:diva-22522 (URN)978-91-7729-123-7 (ISBN)
Public defence
2016-10-21, Kollegiesalen, Brinellvägen 8, KTH, 09:30 (English)
Opponent
Supervisors
Available from: 2016-09-28 Created: 2016-09-28 Last updated: 2018-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Wallhagen, MaritaGlaumann, Mauritz

Search in DiVA

By author/editor
Wallhagen, MaritaGlaumann, Mauritz
By organisation
Environmental engineering
In the same journal
Building and Environment
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1558 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf