hig.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A New Framework and Application of Software Reliability Estimation Based on Fault Detection and Correction Processes
Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong, Hong Kong .
Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong, Hong Kong .
Faculty of Information Engineering, Guizhou Institute of Technology, Guiyang, China .
Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Industriell ekonomi. Högskolan i Gävle, Centrum för logistik och innovativ produktion.
2015 (engelsk)Inngår i: Proceedings: IEEE International Conference on Software Quality, Reliability and Security, QRS 2015, IEEE conference proceedings, 2015, s. 65-74, artikkel-id 7272916Konferansepaper, Publicerat paper (Fagfellevurdert)
Resurstyp
Text
Abstract [en]

Software reliability growth modeling plays an important role in software reliability evaluation. To incorporate more information and provide more accurate analysis, modeling software fault detection and correction processes has attracted widespread research attention recently. However, the assumption of the stochastic fault correction time delay brings more difficulties in modeling and estimating the parameters. In practice, other than the grouped fault data, software test records often include some more detailed information, such as the rough time when one fault is detected or corrected. Such semi-grouped dataset contains more information about fault removal processes than commonly used grouped dataset. Using the semi-grouped datasets can improve the accuracy of time delayed models. In this paper, a fault removal modelling framework for software reliability with semi-grouped data is studied and extended into multi-released software. Also, the corresponding parameter estimation is carried out with Maximum Likelihood estimation method. One test dataset with three releases from a practical software project is applied with the proposed framework, which shows satisfactory performance with the results.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2015. s. 65-74, artikkel-id 7272916
Emneord [en]
fault correction process, maximum likelihood estimation, Non-Homogenous Poisson Process, queuing model, Software reliability
HSV kategori
Identifikatorer
URN: urn:nbn:se:hig:diva-21492DOI: 10.1109/QRS.2015.20ISI: 000380466800009Scopus ID: 2-s2.0-84962120863ISBN: 978-146737989-2 (tryckt)OAI: oai:DiVA.org:hig-21492DiVA, id: diva2:927863
Konferanse
IEEE International Conference on Software Quality, Reliability and Security, QRS 2015, 3-5 August 2015, Vancouver, Canada
Tilgjengelig fra: 2016-05-13 Laget: 2016-05-13 Sist oppdatert: 2018-03-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Zhao, Ming

Søk i DiVA

Av forfatter/redaktør
Zhao, Ming
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 209 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf