Energy Storage System for Wind-Diesel Power System in Remote Locations
2016 (English)Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE credits
Student thesis
Abstract [en]
The aim of this thesis is to show how much fuel can be saved in a power system based in diesel generators with integrated wind turbine (WDPS – Wind Diesel Power System) when a storage system is integrated. Diesel generator is still the most used power system for remote locations where the conventional grid doesn’t reach and its integration with wind turbine is seen as a natural combination to reduce diesel consumption. However, the wind intermittency brings some challenges that might prevent the necessary diesel savings to the level that justifies the integration with wind turbine. The introduction of a storage system can leverage the wind energy that would otherwise be wasted and use it during periods of high demand.The thesis starts by describing the characteristics of energy storage systems (ESS) and introducing the major ESS technologies: Flywheel, Pumped Hydro, Compressed Air and the four main battery technologies, Lead Acid, Nickel-Based, Lithium-ion and Sodium-Sulphur. The aim of this step it to obtain and compile major ESS parameters to frame then into a chart that will be used as a comparison tool.In the next step, wind-diesel power systems are described and the concept of Wind Penetration is introduced. The ratio between the wind capacity and diesel capacity determines if the wind penetration is low, medium and high and this level has a direct relation to the WDPS complexity. This step also introduces important concepts pertaining to grid load and how they are affected by the wind penetration.Next step shows the development of models for low, medium and high penetration WDPS with and without integrated ESS. Simulations are executed based on these models in order to determine the diesel consumption for each of them. The simulations are done by using reMIND tool.The final step is a comparative study where the most appropriated ESS technology is chosen based on adequacy to the system, system size and location. Once the technology is chosen, the ESS economic viability is determine based on the diesel savings obtained in the previous step.Since this is a general demonstration, no specific data about wind variation and consumer demand was used. The wind variation, which is used as the input for the wind turbine (WT), was obtained from a typical Weibull Distribution which is the kind of distribution that most approximate a wind pattern for long term data collection. The wind variation over time was then randomly generated from this distribution. The consumer load variation is based on a typical residential load curves. Although the load curve was generated randomly, its shape was maintained in conformity with the typical curves.This thesis has demonstrated that ESS integrated to WDPS can actually bring a reasonable reduction in diesel utilization. Even with a wind pattern with a low mean speed (5.31 m/s), the savings obtained was around of 17%.Among all ESS technologies studied, only Battery Energy Storage System (BESS) showed to be a viable technology for a small capacity WDPS. Among the four BESS technologies studied, Lead-Acid presents the highest diesel savings with the lower initial investment and shorter payback time.
Abstract [pt]
O objetivo dessa tese é determinar quanto combustível pode ser economizado quando se integra um sistema de armazenamento de energia (ESS na sigla em Inglês) a um sistema gerador baseado em gerador diesel integrado com turbina eólica (WDPS na sigla em Inglês). Geradores à diesel são largamente utilizados em áreas remotas onde a rede de distribuição de eletricidade não chega, e a integração de geradores à diesel com turbinas eólicas se tornou a combinação usual visando a economia de combustível. No entanto, a intermitência do vento cria alguns desafios que podem inclusive tornar essa integração inviável economicamente. A introdução de ESS à esse sistema visa o aproveitamento da energia que seria desperdiçada para usá-la em periodos de alta demanda.A tese começa descrevendo as características de ESS e suas principais tecnologias: Flyweel, hidroelétrica de bombeamento, ar-comprimido e as quatro principais tecnologias de bateria, Chumbo-Ácido, Níquel, Íon de Lítio e Sódio-Sulfúrico. O objetivo dessa etapa é obter os principais parâmetros de ESS e apresentá-los numa planilha para referência futura.Na etapa seguinte, geradores à diesel são descritos e é introduzido o conceito de Penetração do Vento. A razão entre a capacidade eólica e a capacidade do gerador diesel determina se a penetração é baixa, média ou alta, e esse nível tem uma relação direta com a complexidade do WDPS. Nessa etapa também são introduzidos importantes conceitos sobre demanda numa rede de distribuição de eletricidade e como esta é afetada pela penetração do vento.A etapa seguinte apresenta a modelagem de WDPS com baixa, média e alta penetração, incluindo a integração com ESS. Sobre esses modelos são então executadas simulações buscando determinar o consumo de diesel de cada um. As simulações são feitas usando a ferramenta reMIND.A última etapa é um estudo comparativo para determinar qual tecnologia de ESS é a mais apropriada para WDPS, levando-se em conta sua localização geográfica e capacidade. Uma vez que a escolha tenha sido feita, a viabilidade econômica do ESS é calculada baseado na ecomonia de combustível obtida na etepa anterior.Como esta tese apresenta uma demonstração, não foram utilizados dados reais de variação do vento nem de consumo. A variação do vento foi obtida de uma distribuição Weibull típica, que é a distribuição que mais se aproxima da característica do vento coletada em logo prazo. A variação do vento no tempo foi gerada aleatoriamente baseada nessa distribuição. A curva de consumo é baseada em curvas de consumo residenciais típicas. Embora a curva de consumo tenha sido gerada aleatoriamente, o seu formato foi mantido em conformidade com as curvas típicas.Essa tese demonstrou que ESS integrado à WDPS pode trazer uma economia razoável. Mesmo usando uma distribuição de vento com baixo valor médio (5.3 m/s), a economia obtida foi de 17%.Dentre as tecnologias de ESS pesquisadas, apenas o sistema de armazenamento com bateria (BESS na sigla em Inglês) se mostrou viável para um WDPS com pequena capacidade. Dentre as quatro tecnologias de BESS pesquisadas, Chumbo-Ácido foi a que apresentou a maior economia de diesel com o menor investimento inicial e com o menor tempo de retorno do investimento.
Place, publisher, year, edition, pages
2016. , p. 63
Keywords [en]
Energy Storage, Energy Storage System, Energy Storage Technology, ESS, Wind Diesel Power System, WDPS, Wind Turbine, Wind Penetration, Energy Systems Simulation, reMIND
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:hig:diva-22534OAI: oai:DiVA.org:hig-22534DiVA, id: diva2:1012406
Subject / course
Energy systems
Educational program
Energy engineering – master’s programme online (one year) (in eng)
Presentation
(English)
Supervisors
Examiners
2016-11-082016-10-012016-11-08Bibliographically approved