A model for the calculation of the diffuse reflectance and transmittance of a single interference layer with rough interfaces on a transparent substrate is presented. The model is based on electric field calculations and scalar scattering theory, and it assumes that the interfaces of the layer are totally uncorrelated. Examples are given of calculated spectra in which the parameters of the model are varied systematically to show the influence from different interface roughness and refractive index combinations as well as absorption in the film. A wavelength-dependent effective root-mean-square roughness is introduced. This depends on the nature of the roughness, and the bandwidth limits are given by the experimental conditions. Finally, total integrated scattering spectra are calculated and the importance of taking multiple reflections in the substrate into account is shown.