hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the benefit of integration of a district heating system with industrial excess heat: an economic and environmental analysis
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.ORCID iD: 0000-0001-5574-8372
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Department of Management and Engineering, Division of Energy Systems, Linköping University, Linköping, Sweden.
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Department of Management and Engineering, Division of Energy Systems, Linköping University, Linköping, Sweden.ORCID iD: 0000-0003-3472-4210
2017 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 191, p. 454-468Article in journal (Refereed) Published
Abstract [en]

Energy-related cooperation using industrial excess heat (IEH) in district heating (DH) networks shows economic and environmental benefits. A rarely investigated approach is the energy cooperation which incorporates a jointly operated CHP plant also producing process steam for nearby industry. The present study aims to evaluate economic and environmental effects on the Hofors DH system with jointly operated CHP plant when the nearby steel mill extends the supply of recovered IEH. Various IEH supply opportunities with different capacities of hot water and steam were designed and compared with existing IEH utilization, plant heat and electricity production and DH system performance. The energy system model MODEST is used for cost-optimization. A parametric study is used to analyze influences of increasing IEH cost and fluctuating electricity prices. The results show advantages for the DH system to utilize IEH for deliveries of DH and process steam and the cogeneration of electricity. Economic and environmental benefits are decreased total system cost (-1.67 MEUR/a), less use of fuels and electricity, and reduced CO2 emissions with a maximal reachable amount of 28,200 ton/a when the use of biofuel is assumed as limited resource and the substituted marginal electricity production is based on coal condensing power plants. The results also show that industrial steam is a preferred heat supply source as long as the steam cost is below the alternative heat production cost, irrespective of the electricity price. While the cost-effective utilization of industrial hot water for DH is more sensitive and affected by a beneficial CHP production based on higher electricity price segments, it is also shown that utilization of continuously supplied industrial hot water is limited during seasons of low DH demand.

Place, publisher, year, edition, pages
2017. Vol. 191, p. 454-468
Keywords [en]
CHP, MODEST, Marginal electricity, System cost, Energy use, CO2 emission
National Category
Energy Systems
Research subject
Sustainable Urban Development
Identifiers
URN: urn:nbn:se:hig:diva-23746DOI: 10.1016/j.apenergy.2017.01.093ISI: 000395963500036Scopus ID: 2-s2.0-85012164014OAI: oai:DiVA.org:hig-23746DiVA, id: diva2:1081521
Projects
Ett nytt kylningskoncept för att ta till vara industriellt överskottsvärme från heta kroppar; HIG-FORSK 2012/66
Funder
Swedish Energy Agency
Note

The work has been carried out as part of a project with a new cooling concept in the steel industry, which was financed by the Swedish Energy Agency, the companies Varmevarden AB (Hofors Energi AB), Ovako AB and the Clean Production Center. All companies and participants are greatly acknowledged for their support and contributions.

Available from: 2017-03-14 Created: 2017-03-14 Last updated: 2023-04-03Bibliographically approved
In thesis
1. Energy System Collaboration as a Vital Measure to Improve District Heating Performance
Open this publication in new window or tab >>Energy System Collaboration as a Vital Measure to Improve District Heating Performance
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

With joint commitments by twenty-seven countries under the Paris Agreement, the European Union envisioned a resource-efficient and competitive economy without net emission of greenhouse gases by 2050. Immediate and massive efforts across sectors of energy, industry, and buildings will be required, and district heating (DH), through its ability to integrate efficiency measures on the supply and demand side, can play a central role. The aim of this thesis is to investigate techno-economic effects and environmental impacts of different energy system collaborations (ESCOs) with efficiency measures and their ability to improve DH performance. ESCOs studied in Sweden involve various actors and utilize more industrial excess heat (IEH) or new combined heat and power (CHP) plants and provide energy renovation of multi-story apartment building clusters. Results show benefits from lower use of fuels and electricity when utilizing new supplied IEH in a DH system. Systems integration and new CHP plant in another ESCO study show advantages in cogeneration of electricity (29 GWh/a) and industry fuel supply. A new combined-cycle CHP plant in yet another study with systems integration shows benefits with increased electricity production (650 GWh/a), but is also highly dependent on considered investment risk and energy prices. Findings from cluster energy renovation show reduced primary energy use (36.2 GWh/a) and carbon dioxide emissions (8.4 kton CO2/a) mainly from biofuels substituting for fossil fuels in power plants but also decreased CHP production (35.7 GWh/a heat; 6.5 GWh/a electricity) and financial deficit for building owners, energy companies, and industries (44, 33.9, and 2.2 M€/50a respectively). This work proposes methods and approaches (e.g., optimization, simulation, metamodeling) that have the ability to investigate implications from ESCOs with efficiency measures and to quantify changes in system cost, energy resource use, and CO2 emissions.

 

Abstract [sv]

Den Europeiska Unionen eftersträvar i enlighet med Parisavtalet att bli en resurseffektiv och konkurrenskraftig ekonomi utan nettoutsläpp av växthusgaser till 2050. Omedelbara och massiva insatser kommer att krävas inom sektorerna energi, industri och byggnader. Fjärrvärme med möjlighet att integrera effektiviseringsåtgärder på tillförsel- och efterfrågesidan kan spela en central roll. Syftet med denna avhandling är att undersöka tekniska och ekonomiska effekter, samt miljöpåverkan av energisystemsamverkan (ESCOs) med effektiviseringsåtgärder och dessas möjlighet att förbättra fjärrvärmeprestanda. ESCOs studier i Sverige involverar olika samverkande aktörer och utnyttjar industriell överskottsvärme och nya kraftvärmeverk och de energirenoverar även kluster av flervåningshus. Resultaten visar fördelar med minskad användning av bränsle och elektricitet genom nytillförd industriell överskottsvärme i fjärrvärmesystem. Systemintegration och ett nytt kraftvärmeverk i en annan ESCO-studie visar fördelar med ökad elproduktion (29 GWh/år) och bränsleförsörjning från industrier. Ett nytt kombikraftvärmeverk i en annan studie med systemintegration visar fördelar med ökad elproduktion (650 GWh/år), men även ett starkt beroende av övervägd investeringsrisk samt ändrade energipriser. Resultaten från energirenoveringar av byggnadskluster visar minskad primärenergianvändning (36,2 GWh/år) och koldioxidutsläpp (8,4 kton/år) främst från biobränslen som ersätter fossila bränslen i kraftverk, men även en reducerad kraftvärmeproduktion (35,7 GWh/år värme; 6,5 GWh/år el) och ett ekonomiskt underskott för fastighetsägare, energiföretag och industrier (44, 33,9 respektive 2,2 M€/50 år). Denna avhandling föreslår metoder och tillvägagångssätt såsom optimering, simulering och metamodellering för att undersöka implikationer från ESCOs med effektiviseringsåtgärder, samt kvantifierade förändringar av systemkostnader, energiresursanvändning och koldioxidemissioner.

Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2023. p. 112
Series
Doctoral thesis ; 35
Keywords
Energy system collaboration, District heating, Industrial excess heat, Combined heat and power, Energy system optimization, Metamodeling, Building LCC optimization, Building energy simulation, Cluster energy renovation, Energisystemsamverkan, Fjärrvärme, Industriell överskottsvärme, Kraftvärme, Energisystemoptimering, Metamodellering, Byggnads-LCC-optimering, Byggnadsenergisimulering, Klusterenergirenovering
National Category
Energy Systems Energy Engineering
Research subject
Sustainable Urban Development
Identifiers
urn:nbn:se:hig:diva-41214 (URN)978-91-89593-04-6 (ISBN)978-91-89593-05-3 (ISBN)
Public defence
2023-06-12, 12:108 Lilla Jadwigasalen, Högskolan i Gävle, Kungsbäcksvägen 47, Gävle, 10:00 (English)
Opponent
Supervisors
Available from: 2023-05-22 Created: 2023-04-03 Last updated: 2023-05-22

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Weinberger, GottfriedAmiri, ShahnazMoshfegh, Bahram

Search in DiVA

By author/editor
Weinberger, GottfriedAmiri, ShahnazMoshfegh, Bahram
By organisation
Energy system
In the same journal
Applied Energy
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 509 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf