Open this publication in new window or tab >>2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Increasing demands for data rate, energy efficiency and reliability in wireless communications have resulted in the introduction of radio frequency (RF) multiple input multiple output (MIMO) transmitters. However, MIMO transmitters suffer from additional crosstalk impairments along with the power amplifier (PA) and I/Q imbalance distortions observed in single input single output (SISO) transmitters. Therefore, this thesis focuses on the characterization and compensation of these hardware impairments in RF SISO and MIMO transmitters.
PA distortions are often compensated using the Volterra series, but it suffers from high computational complexity. Therefore, a non-parametric method based on density estimation has been proposed in this thesis to estimate the PA transfer function, from which pruned Volterra models can be developed. The method is validated for a Doherty PA and achieves competitive error performance at a lower complexity than its competitors.
For MIMO transmitters, a characterization technique that uses multitone excitation signals has been proposed. Multitone signals yield non-overlapping tones at the outputs of the MIMO Volterra kernels. These kernel outputs are used to identify the dominant crosstalk impairments, from which block structure and base-band behavioral models are developed. The method is validated for 2x2 and 3x3 MIMO transmitters and it is shown that the derived models achieve a better complexity accuracy trade-off than the other pruned MIMO Volterra models considered in this thesis.
Finally, the thesis presents compensation models for joint static I/Q imbalance and MIMO PA distortions based on conjugate pair and real-valued basis functions. The models are augmented with sub-sample resolution to compensate for dynamic I/Q imbalance distortions. The proposed models are validated for a 2x2 RF MIMO transmitter and achieve a better complexity accuracy trade-off than the other state-of-the-art models considered in this thesis.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 65
Series
TRITA-EECS-AVL ; 2018:60
Keywords
Power amplifier, RF transmitters, SISO, MIMO, crosstalk, Volterra series, Volterra kernels, behavioral modeling, DPD, Ramanujan sums, multitone signals, I/Q Imbalance, non-linearity, memory polynomial, density estimation, hardware impairments
National Category
Signal Processing
Identifiers
urn:nbn:se:hig:diva-27935 (URN)978-91-7729-924-0 (ISBN)
Public defence
2018-10-18, Hörsal 12:108, Kungsbäcksvägen 47, Gävle, 13:15 (English)
Opponent
Supervisors
2018-09-212018-09-212018-09-24Bibliographically approved