hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Prospects for Increased Energy Recovery from Horse Manure: A Case Study of Management Practices, Environmental Impact and Costs
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering.
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering.ORCID iD: 0000-0001-5885-3864
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering.ORCID iD: 0000-0002-5661-2917
2017 (English)In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, no 12, article id 1935Article in journal (Refereed) Published
Abstract [en]

A transition to renewable energy sources and a circular economy has increased interest in renewable resources not usually considered as energy sources or plant nutrient resources. Horse manure exemplifies this, as it is sometimes recycled but not often used for energy purposes. The purpose of this study was to explore horse manure management in a Swedish municipality and prospects for energy recovery. The case study includes a survey of horse manure practices, environmental assessment of horse manure treatment in a biogas plant, including associated transport, compared to on-site unmanaged composting, and finally a simplified economic analysis. It was found that horse manure management was characterized by indoor collection of manure most of the year and storage on concrete slabs or in containers, followed by direct application on arable land. Softwood was predominantly used as bedding, and bedding accounted for a relatively small proportion (13%) of the total mix. Anaerobic digestion was indicated to reduce potential environmental impact in comparison to unmanaged composting, mainly due to biogas substituting use of fossil fuels. The relative environmental impact from transport of manure from horse facilities to anaerobic digestion plant was small. Results also indicate a relatively high cost for horse keepers to change from composting on site to anaerobic digestion in a centralized plant.

Place, publisher, year, edition, pages
MDPI , 2017. Vol. 10, no 12, article id 1935
Keywords [en]
horse manure, horse keeping, bioenergy, anaerobic digestion, nutrient recycling, systems perspective, Life Cycle Assessment (LCA), ORWARE, global warming potential (GWP), cumulative energy demand (CED), costs, bedding
National Category
Bioenergy
Identifiers
URN: urn:nbn:se:hig:diva-25604DOI: 10.3390/en10121935ISI: 000423156900006Scopus ID: 2-s2.0-85044482336OAI: oai:DiVA.org:hig-25604DiVA, id: diva2:1160350
Available from: 2017-11-27 Created: 2017-11-27 Last updated: 2018-09-06Bibliographically approved
In thesis
1. From waste problem to renewable energy resource: exploring horse manure as feedstock for anaerobic digestion
Open this publication in new window or tab >>From waste problem to renewable energy resource: exploring horse manure as feedstock for anaerobic digestion
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A sustainable energy system requires, according to energy policies, reduced emissions of greenhouse gases, increased ratio of renewable sources of energy and more efficient use of energy. Horse manure could be regarded as waste, but also as a resource for renewable energy and plant nutrients. This thesis explores the potential of horse manure as a renewable energy source, and its possibilities to support and contribute to energy and environmental objectives. To do this, data was collected from literature, simulations, study visits and interviews.

A number of horse keeping activities were identified in the assessment of horse manure as a feedstock for energy and as a plant resource: feeding, indoor housing, outdoor keeping, manure storage, fertilizing and transport, all with effect on amount and content of horse manure. Results indicated that choice and amount of bedding are important for both energy performance and plant nutrient content in the biofertilizer. Operational conditions such as long hydraulic retention time and high temperature had less impact for horse manure as a biogas feedstock. Anaerobic digestion resulted in the lowest global warming potential compared to incineration and composting, while large-scale incineration reduced primary energy demand, acidification potential and eutrophication potential. In a subsequent simulation, anaerobic digestion had lower potential environmental impact than unmanaged composting, regarding all chosen environmental impact categories in the study. Experiences from energy companies suggest that horse manure can be used in small quantities in co-incineration, with suitable incineration technology, but odor was mentioned as a problem. Farm-scale incineration required continuous maintenance and monitoring and mixing with pellets. As a feedstock for anaerobic digestion horse manure was regarded as suitable for plug-flow processes while stirred processes experienced more technical problems leading to increased cost for plants. With adaption of horse manure to the energy recovery technology to be used, and adaption at energy conversion plants to homogenous materials, this not yet fully utilized bioenergy resource has potential to contribute with renewable energy to the energy system, and thereby also reduce environmental impact from horse manure treatment

Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2018. p. 74
Series
Studies in the Research Profile Built Environment. Doctoral thesis ; 8
Keywords
horse manure, environmental systems analysis, energy systems, renewable energy, environmental impact, anaerobic digestion, biogas, biofertilizer, systems perspective, bedding, incineration, composting, horse manure utilization
National Category
Energy Systems Renewable Bioenergy Research Other Environmental Engineering
Identifiers
urn:nbn:se:hig:diva-27860 (URN)978-91-88145-29-1 (ISBN)978-91-88145-30-7 (ISBN)
Public defence
2018-11-09, 12:108, Kungsbäcksvägen 47, Gävle, 10:00 (English)
Opponent
Supervisors
Available from: 2018-10-16 Created: 2018-09-06 Last updated: 2018-10-16

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Hadin, ÅsaHillman, KarlEriksson, Ola

Search in DiVA

By author/editor
Hadin, ÅsaHillman, KarlEriksson, Ola
By organisation
Environmental engineering
In the same journal
Energies
Bioenergy

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 82 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf