We present a first effort to evaluate the possible utility of a new type of surface glyphs intended for visualizations of multivariate spatial data. The glyphs are based on results from vision research suggesting that our perception of metric 3D structure is distorted and imprecise relative to the actual scene before us; only a class of qualitative properties of the scene is perceived with accuracy. These properties are best characterized as being invariant over affine but not Euclidean transformations. A large number of possible 3D glyphs for the visualization of spatial data can be constructed using such properties. One group of such glyphs is based on the local sign of surface curvature. We investigated this group in two visualization experiments. The results show that available sources of 3D structural information were sufficient for our subjects to make fast and accurate judgments. Some implications for visualization are also discussed.