hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling analog to digital converters at radio frequency
University of Gävle, Department of Technology and Built Environment, Ämnesavdelningen för elektronik.ORCID iD: 0000-0001-5429-7223
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This work considers behavior modeling of analog to digital converters with applications in the radio frequency range, including the field of telecommunication as well as test and measurement instrumentation, where the conversion from analog to digital signals often is a bottleneck in performance. The models are intended to post-process output data from the converter and thereby improve the performance of the digital signal. By building a model of practical converters and the way in which they deviate from ideal, imperfections can be corrected using post-correction methods.

Behavior modeling implies generation of a suitable stimulus, capturing the output data, and characterizing a model. The demands on the test setup are high for converters in the radio frequency range. The test-bed used in this thesis is composed of commercial state-of-the-art instruments and components designed for signal conditioning and signal capture. Further, in this thesis, different stimuli are evaluated, theoretically as well as experimentally.

There are a large number of available model structures for dynamic nonlinear systems. In order to achieve a parameter efficient model structure, a Volterra model was used as a starting-point, which can describe any weak nonlinear system with fading memory, such as analog to digital converters. However, it requires a large number of coefficients; for this reason the Volterra model was reduced to a model structure with fewer parameters, by comparing the symmetry properties of the Volterra kernels with the symmetries from other models. An alternative method is the Kautz-Volterra model, which has the same general properties as the Volterra model, but with fewer parameters. This thesis gives experimental results of the Kautz-Volterra model, which will be interesting to apply in a post-correction algorithm in the future.

To cover behavior not explained by the dynamic nonlinear model, a complementary piecewise linear model component is added. In this thesis, a closed form solution to the estimation problem for both these model components is given. By gradually correcting for each component the performance will improve step by step. In this thesis, the relation between a given component and the performance of the converter is given, as well as potential for improvement of an optimal post-correction.

Place, publisher, year, edition, pages
Stockholm: Signalbehandling, Kungliga Tekniska högskolan , 2007. , p. 46
Series
Trita-EE, ISSN 1653-5146 ; 2007:062
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:hig:diva-1229ISBN: 978-91-7178-777-4 (print)OAI: oai:DiVA.org:hig-1229DiVA, id: diva2:117891
Public defence
(English)
Available from: 2008-05-27 Created: 2008-05-27 Last updated: 2018-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Björsell, Niclas

Search in DiVA

By author/editor
Björsell, Niclas
By organisation
Ämnesavdelningen för elektronik
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1200 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf