The recently completed EU-project Life Cycle Management of Concrete Infrastructure for Improved Sustainability (Lifecon) has developed a generic and predictive Life Cycle Management System (LMS) for maintenance optimisation and planning of buildings. The system facilitates the change of today.s reactive practice of maintenance management into a predictive life cycle based maintenance management system. To enable simplified prediction of service life and maintenance interval in such a predictive life cycle management system, a quantitative classification system for environmental loading is needed. At present there are a number of standards containing quantitative classification of environmental loading onto structures and building materials, e.g. ISO 15686-4, EOTA and ISO 9223. The governing standard for concrete structures such as bridges and tunnels is the European Standard EN 206-1 Concrete . part 1: Specification, performance, production and conformity. This standard divides the environmental loading into 18 exposure classes, which cover environmental loads from atmosphere, seawater, fresh water, groundwater and soil, but also the decisive parameters for moisture and chlorides. Almost all exposure classes within the standard include only qualitative descriptions. To make the standard EN 206-1 valid for LMS the standard has to be further developed into a quantitative classification system for environmental loading. A proposal of a quantitative classification of the exposure classes within the standard EN 206-1 regarding corrosion induced by carbonation is presented in this paper. The proposed classification is partly based on the extensive work performed in the Lifecon project, partly based on literature studies. The proposed classification is validated through comparison of real measurements made on a bridge located in Sweden and calculations using a full probabilistic degradation model. It is believed that such exposure classification is possible to use in a LMS to provide simplified service life analysis and possibilities to map the risk of degradation.