hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study.
University of Gävle, Belastningsskadecentrum.
University of Gävle, Belastningsskadecentrum.
2004 (English)In: Histochemistry and Cell Biology, ISSN 0948-6143, E-ISSN 1432-119X, Vol. 121, no 3, p. 219-227Article in journal (Refereed) Published
Abstract [en]

The myofibrillar and cytoskeletal alterations observed in delayed onset muscle soreness (DOMS) caused by eccentric exercise are generally considered to represent damage. By contrast our recent immunohistochemical studies suggested that the alterations reflect myofibrillar remodeling (Yu and Thornell 2002; Yu et al. 2003). In the present study the same human muscle biopsies were further analyzed with transmission electron microscopy and immunoelectron microscopy. We show that the ultrastructural hallmarks of DOMS, Z-disc streaming, Z-disc smearing, and Z-disc disruption were present in the biopsies and were significantly more frequent in biopsies taken 2-3 days and 7-8 days after exercise than in those from controls and 1 h after exercise. Four main types of changes were observed: amorphous widened Z-discs, amorphous sarcomeres, double Z-discs, and supernumerary sarcomeres. We confirm by immunoelectron microscopy that the main Z-disc protein alpha-actinin is not present in Z-disc alterations or in the links of electron-dense material between Z-discs in longitudinal register. These alterations were related to an increase of F-actin and desmin, where F-actin was present within the strands of amorphous material. Desmin, on the other hand, was seen in less dense regions of the alterations. Our results strongly support that the myofibrillar and cytoskeletal alterations, considered to be the hallmarks of DOMS, reflect an adaptive remodeling of the myofibrils

Place, publisher, year, edition, pages
2004. Vol. 121, no 3, p. 219-227
Keywords [en]
Actinin metabolism, Actins metabolism, Adaptation, Physiological, Adult, Desmin metabolism, Exercise physiology, Humans, Immunohistochemistry, Male, Microscopy, Immunoelectron, Muscles metabolism ultrastructure, Myofibrils metabolism ultrastructure, Sarcomeres metabolism ultrastructure
Identifiers
URN: urn:nbn:se:hig:diva-2778DOI: 10.1007/s00418-004-0625-9ISI: 000220364600006PubMedID: 14991331OAI: oai:DiVA.org:hig-2778DiVA, id: diva2:119440
Available from: 2007-11-28 Created: 2007-11-28 Last updated: 2017-12-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids=14991331&dopt=Citation
By organisation
Belastningsskadecentrum
In the same journal
Histochemistry and Cell Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf