We prove the existence and describe the distribution on the complex plane of the singularities, resonant states (RSs), of the transmission coefficient in the problem of the plane wave scattering by a parallel-plate dielectric slab in free space. It is shown that the transmission coefficient has isolated poles all with nonzero imaginary parts that form countable sets in the complex plane of the refraction index or permittivity of the slab with the only accumulation point at infinity. The transmission coefficient never vanishes and anomalous scattering, when its modulus exceeds unity, occurs at arbitrarily small loss of the dielectric filling the layer. These results are extended to the cases of scattering by arbitrary multi-layer parallel-plane media. Connections are established between RSs, spectral singularities, eigenvalues of the associated Sturm-Liouville problems on the line, and zeros of the corresponding Jost function.