Power Plant Operation Optimisation: Unit commitment of gas turbines using Machine Learning and MILP programming
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 30 credits / 45 HE credits
Student thesis
Sustainable development
The essay/thesis is partially on sustainable development according to the University's criteriaAlternative title
Optimización de la operación de centrales eléctricas : Asignación de unidades de turbinas de gas utilizando aprendizaje automático y programación MILP (Spanish)
Place, publisher, year, edition, pages
2018. , p. 133
Keywords [en]
Gas Turbine, CCGT, Economic Dispatch, Load Forecasting, MILP, Machine Learning, Boosted Regression Trees, Energy Systems Optimisation.
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:hig:diva-27660OAI: oai:DiVA.org:hig-27660DiVA, id: diva2:1239495
External cooperation
Siemens Industrial Turbomachinery (SIT)
Subject / course
Energy systems
Educational program
Energy systems – master’s programme (two years)
Presentation
2018-08-14, 11320, Kungsbäcksvägen 47, 801 76, Gävle, 09:30 (English)
Supervisors
Examiners
2018-08-242018-08-162018-08-24Bibliographically approved