hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A nonlinear multiparameter EV problem
Institut für MathematikTechnische Universität Clausthal, Clausthal-Zellerfeld, Germany.
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electronics, Mathematics and Natural Sciences, Mathematics.
Department of Mathematics and Supercomputing, Penza State University, Penza, Russia.
O.Ya. Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
2018 (English)In: Progress In Electromagnetics Research Symposium: PIERS 2017, PIERS 2017: Nonlinear and Inverse Problems in Electromagnetics / [ed] Beilina L., Smirnov Y., Springer New York LLC , 2018, p. 55-70Conference paper, Published paper (Refereed)
Abstract [en]

We investigate a generalization of one-parameter eigenvalue problems arising in the theory of wave propagation in waveguides filled with nonlinear media to more general nonlinear multi-parameter eigenvalue problems for a nonlinear operator. Using an integral equation approach, we derive functional dispersion equations (DEs) whose roots yield the desired eigenvalues. The existence of the roots of DEs is proved and their distribution is described.

Place, publisher, year, edition, pages
Springer New York LLC , 2018. p. 55-70
Series
Springer Proceedings in Mathematics & Statistics (PROMS) ; 243
Keywords [en]
Dispersion equations, Multi-parameter eigenvalue problems, Nonlinear spectral theory, Dispersion (waves), Integral equations, Inverse problems, Mathematical operators, Nonlinear equations, Wave propagation, Eigenvalue problem, Eigenvalues, Integral equation approaches, Multiparameters, Non-linear media, Nonlinear operator, Spectral theory, Eigenvalues and eigenfunctions
National Category
Mathematics
Identifiers
URN: urn:nbn:se:hig:diva-27866DOI: 10.1007/978-3-319-94060-1_5Scopus ID: 2-s2.0-85051146418ISBN: 9783319940595 (print)ISBN: 978-3-319-94060-1 (electronic)OAI: oai:DiVA.org:hig-27866DiVA, id: diva2:1246005
Conference
PIERS 2017
Available from: 2018-09-06 Created: 2018-09-06 Last updated: 2018-09-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Shestopalov, Yury V.

Search in DiVA

By author/editor
Shestopalov, Yury V.
By organisation
Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf