A nonlinear multiparameter EV problem
2018 (English)In: Progress In Electromagnetics Research Symposium: PIERS 2017, PIERS 2017: Nonlinear and Inverse Problems in Electromagnetics / [ed] Beilina L., Smirnov Y., Springer New York LLC , 2018, p. 55-70Conference paper, Published paper (Refereed)
Abstract [en]
We investigate a generalization of one-parameter eigenvalue problems arising in the theory of wave propagation in waveguides filled with nonlinear media to more general nonlinear multi-parameter eigenvalue problems for a nonlinear operator. Using an integral equation approach, we derive functional dispersion equations (DEs) whose roots yield the desired eigenvalues. The existence of the roots of DEs is proved and their distribution is described.
Place, publisher, year, edition, pages
Springer New York LLC , 2018. p. 55-70
Series
Springer Proceedings in Mathematics & Statistics (PROMS) ; 243
Keywords [en]
Dispersion equations, Multi-parameter eigenvalue problems, Nonlinear spectral theory, Dispersion (waves), Integral equations, Inverse problems, Mathematical operators, Nonlinear equations, Wave propagation, Eigenvalue problem, Eigenvalues, Integral equation approaches, Multiparameters, Non-linear media, Nonlinear operator, Spectral theory, Eigenvalues and eigenfunctions
National Category
Mathematics
Identifiers
URN: urn:nbn:se:hig:diva-27866DOI: 10.1007/978-3-319-94060-1_5Scopus ID: 2-s2.0-85051146418ISBN: 9783319940595 (print)ISBN: 978-3-319-94060-1 (electronic)OAI: oai:DiVA.org:hig-27866DiVA, id: diva2:1246005
Conference
PIERS 2017
2018-09-062018-09-062022-09-15Bibliographically approved