hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Data Fusion in the Air With Non-Identical Wireless Sensors
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics.ORCID iD: 0000-0001-8387-3779
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics.ORCID iD: 0000-0001-5429-7223
KTH Royal Institute of Technology, Stockholm, Sweden .
2019 (English)In: IEEE Transactions on Signal and Information Processing over Networks, ISSN 2373-776X, Vol. 5, no 4, p. 646-656Article in journal (Refereed) Published
Abstract [en]

In this paper, a multi-hypothesis distributed detection technique with non-identical local detectors is investigated. Here, for a global event, some of the sensors/detectors can observe the whole set of hypotheses, whereas the remaining sensors can either see only some aspects of the global event or infer more than one hypothesis as a single hypothesis. Another possible option is that different sensors provide complementary information. The local decisions are sent over a multiple access radio channel so that the data fusion is formed in the air before reaching the decision fusion center (DFC). An optimal energy fusion rule is formulated by considering the radio channel effects and the reliability of the sensors together, and a closed-form solution is derived. A receive beamforming algorithm, based on a modification of Lozano's algorithm, is proposed to equalize the channel gains from different sensors. Sensors with limited detection capabilities are found to boost the overall system performance when they are used along with fully capable sensors. The additional transmit power used by these sensors is compensated by the designed fusion rule and the antenna array gain. Additionally, the DFC, equipped with a large antenna array, can reduce the overall transmit energy consumption without sacrificing the detection performance.

Place, publisher, year, edition, pages
2019. Vol. 5, no 4, p. 646-656
Keywords [en]
Temperature sensors, Manganese, Wireless sensor networks, Antenna arrays, Sensor fusion, Data integration, Wireless Sensor Network, Multiple hypotheses, Non-identical local detector, MAC, Data Fusion in the air, Optimal power fusion rule, Large antenna array
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:hig:diva-30918DOI: 10.1109/TSIPN.2019.2928175ISI: 000492993200003Scopus ID: 2-s2.0-85074191069OAI: oai:DiVA.org:hig-30918DiVA, id: diva2:1369161
Funder
Swedish Agency for Economic and Regional GrowthEuropean Regional Development Fund (ERDF)Available from: 2019-11-11 Created: 2019-11-11 Last updated: 2019-11-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Panigrahi, Smruti RanjanBjörsell, Niclas

Search in DiVA

By author/editor
Panigrahi, Smruti RanjanBjörsell, Niclas
By organisation
Electronics
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf