Evergreen and deciduous broad-leaved tree species can coexist across the globe and constitute different broad-leaved forests along large-scale geographical and climatic gradients. A better understanding of climatic influence on the distribution of mixed evergreen and deciduous broad-leaved forest is of fundamental importance when assessing this mixed forest's resilience and predicting potential dynamics of broad-leaved forests under future climate change. Here, we quantified the horizontal distribution of this mixed forest in mountains in relation to climate seasonality by compiling vegetation information from the earlier records and our own field sampling on major subtropical mountains of China. We found that the probability of occurrence of this forest in subtropical mountains was positively associated with the latitude but not the longitude. The occurrence probability of this forest was observed at high-temperature but not precipitation seasonality mountains. Temperature seasonality was five times more important than precipitation seasonality in explaining the total variation of occurrence of this mixed forest. For its distribution, our results shed light on that temperature seasonality was generally a more powerful predictor than precipitation seasonality for montane mixed forest distribution. Collectively, this study clearly underscores the important role of temperature seasonality, a previously not quantified climatic variable, in the occurrence of this mixed forest along geographical gradients and hence yields useful insight into our understanding of climate-vegetation relationships and climate change vulnerability assessment in a changing climate.