Cohomology of the moduli space of curves of genus three with level two structure
2014 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]
In this thesis we investigate the moduli space M3[2] of curves of genus 3 equipped with a symplectic level 2 structure. In particular, we are interested in the cohomology of this space. We obtain cohomological information by decomposing M3[2] into a disjoint union of two natural subspaces, Q[2] and H3[2], and then making S7- resp. S8-equivariantpoint counts of each of these spaces separately.
Abstract [sv]
Målet med denna uppsats är att undersöka modulirummet M3[2] av kurvor av genus 3 med symplektisk nivå 2 struktur. Mer specifikt vill vi hitta informationom kohomologin av detta rum. För att uppnå detta delar vi först upp M[2] i en disjunkt union av två naturliga delrum, Q[2] och H3[2], och räknar därefter punkterna av dessa rum S7- respektive S8-ekvivariant.
Place, publisher, year, edition, pages
Stockholm: Department of Mathematics, Stockholm University , 2014. , p. 138
Keywords [en]
Algebraic geometry, Moduli space, Cohomology, Symplectic structure, Point count
National Category
Geometry Algebra and Logic
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:hig:diva-32119ISBN: 978-91-7447-923-2 (print)OAI: oai:DiVA.org:hig-32119DiVA, id: diva2:1422674
Presentation
2014-05-22, 306, Hus 6, Kräftriket, 10:00 (English)
Opponent
Supervisors
2020-04-202020-04-082020-04-20Bibliographically approved