hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical study of concrete-filled steel composite (CFSC) stub columns with steel stiffeners
Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.ORCID iD: 0000-0002-9431-7820
Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
2014 (English)In: Latin American Journal of Solids and Structures, ISSN 1679-7817, E-ISSN 1679-7825, Vol. 11, no 4, p. 683-703Article in journal (Refereed) Published
Abstract [en]

Numerical study of concrete-filled steel composite (CFSC) stub columns with steel stiffeners is presented in this paper. The behaviour of the columns is examined by the use of the finite element software LUSAS. Results from nonlinear finite element analyses are compared with those from corresponding experimental tests which uncover the reasonable accuracy of the modelling. Novel steel stiffeners are used in the CFSC stub columns of this study. The columns are extensively developed considering three different special arrangements of the steel stiffeners with various number, spacing, and widths of the stiffeners. The main variables are: (1) arrangement of the steel stiffeners (C1, C2, and C3); (2) number of the steel stiffeners (2 and 3); (3) spacing of the steel stiffeners (50 mm and 100 mm); (4) width of the steel stiffeners (50 mm, 75 mm, and 100 mm); (5) steel thickness (2 mm, 2.5 mm, and 3 mm); (6) concrete compressive strength (30 MPa, 40 MPa, and 50.1 MPa); (7) steel yield stress (234.3 MPa, 350 MPa, and 450 MPa). Effects of the variables on the behaviour of the columns are assessed. Failure modes of the columns are also illustrated. It is concluded that the variables have considerable effects on the behaviour of the columns. Moreover, ultimate load capacities of the columns are predicted by the design code EC4, suggested equation of other researchers, and proposed equation of the authors of this paper. The obtained ultimate load capacities from the analyses are compared with the predicted values. It concludes that EC4 gives more conservative predictions than the equations.

Place, publisher, year, edition, pages
2014. Vol. 11, no 4, p. 683-703
Keywords [en]
Numerical study, composite column, steel stiffener, nonlinear finite element analysis, ultimate load capacity, ductility.
National Category
Civil Engineering
Identifiers
URN: urn:nbn:se:hig:diva-33949DOI: 10.1590/s1679-78252014000400008ISI: 000326405200008Scopus ID: 2-s2.0-84886814553OAI: oai:DiVA.org:hig-33949DiVA, id: diva2:1467154
Available from: 2020-09-14 Created: 2020-09-14 Last updated: 2021-09-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bahrami, Alireza

Search in DiVA

By author/editor
Bahrami, Alireza
In the same journal
Latin American Journal of Solids and Structures
Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 160 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf