hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Defining an Annual Energy Output Ratio between Solar Thermal Collectors and Photovoltaic Modules
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.ORCID iD: 0000-0002-8156-2587
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.ORCID iD: 0000-0002-0539-3291
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.
2022 (English)In: Energies, E-ISSN 1996-1073, Vol. 15, no 15, article id 5577Article in journal (Refereed) Published
Abstract [en]

Photovoltaics (PV) and Solar Thermal (ST) collectors are sometimes competitors, as investment capacity, energy demand, and roof space are limited. Therefore, a ratio that quantifies the difference in annual energy output between ST and PV for different locations is useful. A market survey assessing the average price and performance both in 2013 and 2021 was conducted, showing a factor of 3 cell price decrease combined with a 20% efficiency increase, while ST showed negligible variation. Winsun simulations were conducted, and the results were plotted on the world map. Despite variations due to local climate, the ratio of energy production (ST/PV) increases at lower latitudes mainly due to (a) higher air temperature increasing ST output but decreasing the PV output; (b) solar radiation reducing ST efficiency to zero while having a minor impact on PV efficiency. The ratio was calculated for several ST operating temperatures. For latitudes lower than 66 degrees, the ratio of a flat plate at 50 degrees C to a PV module ranges from 1.85 to 4.46, while the ratio between a vacuum tube at 50 degrees C and a PV module ranges from 3.05 to 4.76. This ratio can support the decision between installing ST or PV while combining different factors such as energy value, system complexity, and installation cost.

Place, publisher, year, edition, pages
MDPI , 2022. Vol. 15, no 15, article id 5577
Keywords [en]
annual energy output ratio, PV & solar thermal, solar electricity, solar heat, global energy scenario, decision-making tool
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:hig:diva-36301DOI: 10.3390/en15155577ISI: 000839714100001Scopus ID: 2-s2.0-85136466784OAI: oai:DiVA.org:hig-36301DiVA, id: diva2:1568000
Funder
European Commission, 814865European Commission, 01000785Available from: 2021-06-17 Created: 2021-06-17 Last updated: 2023-08-28Bibliographically approved
In thesis
1. Development of Concentrating Photovoltaic-Thermal Solar Collectors
Open this publication in new window or tab >>Development of Concentrating Photovoltaic-Thermal Solar Collectors
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fossil fuels have greatly improved human living standards and saved countless lives. However, today, their continued use threatens human survival, as CO2 levels rise at an unprecedented pace to levels never seen during human existenceon earth.

This thesis aims at gathering knowledge on solar energy in general and photovoltaic thermal (PVT) and concentrating photovoltaic thermal (C-PVT) in particular. This thesis establishes several key research questions for PVTs and C-PVT collectors and attempts to answer them.

A comprehensive market study of solar thermal (ST), photovoltaic (PV) and PVT was conducted to obtain prices and performance. Simulations of the energy output around the world were conducted. A ratio between ST and PV annual output was defined to serve as a tool for comparison and plotted on a world map.

A key issue for PVT collectors is how to encapsulate the solar cells in a way that, amongst other things, protects the cell from the thermal expansion of the receiver, has a high transparency, and insulates electrically while at the same time conducts the heat to the receiver. In order to be useful, this analysis must also consider the impacts on the production processes. Several prototypes were constructed, a test methodology was created, and the analysis of the results enabled several conclusions on the validity of the different silicon encapsulations methods.

This thesis relies heavily on collector testing with 30 different prototypes of C-PVTs being designed and constructed. Most testing was conducted using steady state method but quasi dynamic was also carried out. From this work, several guidelines were created for the design of collectors in terms of reflector geometry, cell size, string configuration, encapsulation method and several other design aspects. These analyses were complemented with thermal simulations (COMSOL & ANSYS), string layout (LT SPICE) and evaluation of existing installations. Two novel design ideas came from this thesis work, which the author will patent in the coming year. Additionally, raytracing work has been conducted and a new reflector geometry more appropriate for C-PVTs has been found to significantly improve the annual performance. Finally, the current and future position of PVTs in the global energy market is discussed.

Abstract [sv]

Denna avhandling syftar till att samla kunskaper om solenergi i allmänhet och PVT-hybrider som ger både el och värme i synnerhet. Särskilt stort intresse riktas mot koncentrerande C-PVT-hybrider.

Avhandlingen ställer ett flertal viktiga forskningsfrågor för PVT och CPVT solfångare och försöker svara på dem. En omfattande marknadsstudie av solvärme (ST), solceller (PV) och PVT har genmförts för att erhålla priser och prestanda.

Studien användes som underlag för energiutbytessimuleringar runt om i världen. Ett förhållande för kvoten mellan energiutbytena för ST och PV definierades för att användas som ett verktyg för en jämförelse mellan systemen och ritades in på världskartan.

En viktig fråga för PVT-solfångare är hur man kapslar in solcellerna på ett sätt som bland annat skyddar solcellen från absorbatorns värmeutvidgning, har hög transparens och isolerar elektriskt samtidigt som den leder värmen till absorbatorn. För att vara användbar måste denna analys också ta hänsyn till produktionsprocesserna. Flera prototyper konstruerades, en testmetod utarbetades och analysen av resultaten möjliggjorde ett antal viktiga slutsatser om funktionen hos de olika silikoninkapslingsmetoderna.

Denna avhandling baseras på verkningsgradstestning av 30 olika prototyper av C-PVT. De flesta testerna utfördes med den statiska testmetoden, men kvasidynamisk testning har också använts. Från denna testning utarbetades riktlinjer för konstruktionen av solfångarna när det gäller reflektorgeometri, cellstorlek, strängkonfiguration och inkapslingsmetod. Dessa analyser kompletterades med termiska simuleringar (COMSOL & ANSYS), stränglayout (LT SPICE)och utvärdering av befintliga installationer. Ett antal nya designidéer kommer att patenteras under de kommande åren. En ny reflektorgeometri för C-PVT som förbättrar det årliga energiutbytet har utarbetats och testats. Slutligen diskuteras PVTs nuvarande och framtida position på den globala marknaden försolenergisystem.

Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2021. p. 194
Series
Doctoral thesis ; 21
Keywords
Solar Energy, Photovoltaic-Thermal (PVT), Concentration, Collector Testing, Silicon Cell Encapsulation, Ray Tracing, Market Survey, String Layout, Prototype Collectors, Solenergi, Fotovoltaisk-termisk (PVT), Koncentration, Solfångarprovning, Inkapsling av kiselceller, Strålgångsberäkning, Marknadsundersökning, Strängdesign, Solfångarprototyper
National Category
Energy Engineering
Research subject
Sustainable Urban Development
Identifiers
urn:nbn:se:hig:diva-35411 (URN)978-91-88145-67-3 (ISBN)978-91-88145-68-0 (ISBN)
Public defence
2021-08-27, Room 13:111, Kungsbäcksvägen 47, Gävle, 10:15 (English)
Opponent
Supervisors
Available from: 2021-06-17 Created: 2021-03-09 Last updated: 2024-08-29Bibliographically approved

Open Access in DiVA

fulltext(6531 kB)319 downloads
File information
File name FULLTEXT01.pdfFile size 6531 kBChecksum SHA-512
dd003caef0298345e5ebfc18bc6c9558ea629a48471c1fb785edcc872a74612fc47dfecfaf74c76b55bcbc97baf458c1bc233e177b7174c641469cff0660bea6
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Gomes, JoãoCabral, DiogoKarlsson, Björn O.

Search in DiVA

By author/editor
Gomes, JoãoCabral, DiogoKarlsson, Björn O.
By organisation
Energy Systems and Building Technology
In the same journal
Energies
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 319 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 323 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf