Window size and orientation of holding façade influences the quantity of solar insolation into buildings and consequently the heating/cooling demand and occupant thermal comfort. In cold climates, window optimization (size and the orientation) can reduce the heating requirements if well integrated into the building envelope. However, in hot climates window sizing and orientation poses challenges as it only adds to the cooling energy demand. In addition to design strategies like window size and orientation, passive strategies like blinds or shades are recommended to reduce and control the solar insolation. The current study, through IDA-ICE building simulations, explores optimization of window size, orientation and shading configurations (internal blinds and PV as external shades) and its influence on the cooling energy demand in Harare, Zimbabwe, located in the tropic of Capricorn in the Southern Hemisphere. The results shows that cooling demand and occupant thermal comfort was sensitive to the North facing facades, and slightly on the west, but not on the South and west oriented windows. Shading reduced the cooling demand and use of PV panels proved equally effective although only a slight improvement in thermal comfort level was obtained compared to using internal blinds. However, PV panels produced electricity that could help offset the cooling demand by powering a heat pump or reduce the imported power for other building services. Implications of the results on building design and operation are discussed.