hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Study of eccentric and buckling-restrained bracing systems used in frames
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Energy Systems and Building Technology.ORCID iD: 0000-0002-9431-7820
2021 (English)In: Journal of Civil, Construction and Environmental Engineering, ISSN 2637-3882, Vol. 6, no 4, p. 120-125Article in journal (Refereed) Published
Abstract [en]

The present paper studies eccentric braces (EBs) and buckling-restrained braces (BRBs) used in steel frames. The eccentrically braced frames (EBFs) and buckling-restrained braced frames (BRBFs) that have respectively employed the EBs and BRBs are considered with different types of links as shear, moment-shear and moment links depending on their link length which is an important factor in the design of the EBFs and BRBFs. The BRB consists of a steel core and its surrounding steel tube filled with concrete. The concrete confinement prevents buckling of the steel core. The analysed EBFs and BRBFs by the finite element software ABAQUS under earthquake records are taken into account. Effects of the links of the EBFs and BRBFs on the performance of the frames are discussed. The results uncover that most of the lateral displacements of the EBFs and BRBFs having the shear link are smaller than their counterparts having the moment-shear and moment links, whilst, all the base shear capacities of the former are the greatest. However, majority of the EBFs and BRBFs with the moment link dissipate less energy than their counterparts with the shear and moment-shear links, whereas, most of the link rotations of the former are smaller than the latter. In addition, the BRBFs generally demonstrate better performance than their EBF counterparts.

Place, publisher, year, edition, pages
Science Publishing Group , 2021. Vol. 6, no 4, p. 120-125
Keywords [en]
Frame, Brace, Steel, Concrete, Eccentric, Buckling
National Category
Civil Engineering
Research subject
no Strategic Research Area (SFO)
Identifiers
URN: urn:nbn:se:hig:diva-37087DOI: 10.11648/j.jccee.20210604.13OAI: oai:DiVA.org:hig-37087DiVA, id: diva2:1599930
Available from: 2021-10-03 Created: 2021-10-03 Last updated: 2022-04-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Bahrami, Alireza

Search in DiVA

By author/editor
Bahrami, Alireza
By organisation
Energy Systems and Building Technology
Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 448 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf