hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Robots are a promising investment to fight pandemics
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics.ORCID iD: 0000-0003-2878-5930
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics.ORCID iD: 0000-0001-5429-7223
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics.
2021 (English)In: 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), IEEE , 2021, p. 458-463Conference paper, Published paper (Refereed)
Abstract [en]

Coronavirus caused pandemics as many viruses did through human history. The current pandemic causes overwhelmed healthcare system, locked down cities, and massive fatality among humans. Thus, different robots have been used since the COVID outbreak worldwide to reduce spreading infectious diseases and support frontline healthcare workers. This paper sets out the different robots implemented for hospital, non-hospital use, and possible use that can be deployed amidst the pandemic. A literature survey of versatile robots during COVID-19 is introduced. Roboticists contributed with wheeled and drone robots with various applications to assist medical care systems and society during the ongoing crisis. Pandemics are common throughout human history and difficult to avoid or prevent; thus, we intend to encourage societies, academia, engineers and innovators to invest more in robots that cannot catch the virus and consequently introduce beneficial solutions to fight such pandemic in the future.

Place, publisher, year, edition, pages
IEEE , 2021. p. 458-463
Keywords [en]
COVID-19; Drone; Exoskeleton; Frontline Workers; Monitoring Robots; Pandemic; Rehabilitation; Robots; Sanitising
National Category
Health Sciences Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:hig:diva-37208DOI: 10.1109/SPIN52536.2021.9566116Scopus ID: 2-s2.0-85126187085ISBN: 978-1-6654-3564-2 (electronic)OAI: oai:DiVA.org:hig-37208DiVA, id: diva2:1604772
Conference
SPIN 2021 8th International Conference on Signal Processing and Integrated Networks, 26-27 August, Noida, India
Available from: 2021-10-21 Created: 2021-10-21 Last updated: 2023-02-17Bibliographically approved
In thesis
1. The Robustness and Energy Evaluation of a Linear Quadratic Regulator for a Rehabilitation Hip Exoskeleton
Open this publication in new window or tab >>The Robustness and Energy Evaluation of a Linear Quadratic Regulator for a Rehabilitation Hip Exoskeleton
2022 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The implications of gait disorder, muscle weakness, and spinal cord injuries for work and age-related mobility degradation have increased the need for rehabilitation exoskeletons. Specifically, the hip rehabilitation exoskeletons due to a high percentage of the mechanical power is generated by this join during the gait cycle. Additionally, the prolonged hospitalisation after hip replacement and acetabular surgeries that affect human mobility, the social-economic impacts and the quality of life. For these reasons, a hip rehabilitation exoskeleton was our focus in this research, as it will contribute being a sustainable solution to take over the burden of physiotherapy and let patients perform their rehabilitation at home or outdoors. 

This thesis details an approach of creating a hip rehabilitation exoskeleton, starting with modelling, simulating, and controlling the rehabilitation hip joint in a based-simulation environment. The mathematical model and the reason for using a series elastic actuator in the hip joint to execute the movement in a sagittal plane are more detailed. Because trajectory tracking is commonly used for controlling rehabilitation exoskeletons to ensure safe and reliable motion tracking methods; therefore, two desired torque signals were tested and analysed with the optimal linear quadratic regulator (LQR). The experiments were performed using two torque signals of a healthy hip joint—representing the sit-to-stand (STS) and the walking activity for their importance in lower limb movements. However, the mathematical model used as a basis of the optimal control strategy is usually influenced by multiple sources of uncertainties. Therefore, four case studies of various optimal control strategies were tested for a twofold reason: to choose the most optimal control strategy, and to test the energy consumption of these cases during the STS and walking movements, because the long-term goal is to produce a lightweight and reliable rehabilitation hip exoskeleton.

The research showed compelling evidence that tuning the control strategy will not influence the robustness of an optimal controller only, but affect the energy consumption during the STS and walking activity, which needs to be considered in exoskeleton control design regarding its applications.

Abstract [sv]

Behovet av exoskelett för rehabilitering har ökat p.g.a. komplikationer som uppstår vid arbete och åldersrelaterad försämring. Komplikationerna består bland annat av gångstörning, muskelsvaghet och ryggmärgsskador. Speciellt höftexoskelett avsett för rehabilitering är extra intressant på grund av att rehabilitering inom detta område omfattar långvarig sjukhusvistelse efter höftprotes- och acetabulära operationer. Höftleden är en av de leder som utsätts för relativt höga mekaniska påfrestningar och minskad rörelseförmåga leder inte sällan till socioekonomiska effekter och minskad livskvalité. Av denna anledning kommer höftexoskelett för rehabilitering vara det primära området i denna avhandling då det kommer att vara en lösning för att minska belastningen inom sjukvård och låta patienter utföra sin rehabilitering hemma på egen hand.

Denna avhandling beskriver en metod för att skapa ett höftexoskelett avsett för rehabilitering med början i modellering, simulering och kontroll av en höftled av exoskelett i en simuleringsmiljö. Genom att använda ett serieelastiskt manöverdon för att utföra en höftledsrörelse i ett sagittalt så uppnås en mer detaljerad matematisk modell. Genom att använda banspårning, som vanligtvis används för att kontrollera exoskelett för rehabilitering för att säkerställa säkra och pålitliga rörelsespårningsmetoder, så analyserades två vridmomentssignaler mot en linjär kvadratisk regulator (LQR). Simuleringarna utfördes med hjälp av två vridmomentsignaler som representerar sitt-till-stå (STS) och gångaktivitet hos en frisk höftled. Den matematiska modellen som används för att hitta den optimala kontrollstrategin påverkas vanligtvis av flera osäkerhetskällor. Därför testades fyra fallstudier av olika optimala kontrollstrategier för två skäl: den ena för att välja den mest optimala kontrollstrategin emellan och den andra för att mäta energiförbrukningen för dessa STS och gångrörelse så att vi kan producera ett lätt och pålitligt höftexoskelett avsett för rehabilitering.

Forskningen visar övertygande bevis för att inställning av styrstrategin inte bara kommer att påverka robustheten hos en optimal styrenhet utan även påverkar energiförbrukningen under STS och gångaktivitet vilket måste beaktas vid design av exoskelett.

Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2022. p. 34
Series
Licentiate thesis ; 15
Keywords
Hip Rehabilitation Exoskeleton, Robust Controller, Energy Consumption, Series Elastic Actuator (SEA), LQR Control, Luenberger State Observer, Torque Control, Höftexoskelett för rehabilitering, Robust reglering, Energiförbrukning, serieelastiskt manöverdon (SEA), LQR reglering, Luenberger State Obser-ver, Moment reglering
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:hig:diva-39907 (URN)978-91-88145-97-0 (ISBN)
Presentation
2022-11-28, Krusenstjernasalen, University of Gävle, 09:00 (English)
Opponent
Supervisors
Available from: 2022-11-07 Created: 2022-09-09 Last updated: 2023-02-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Andersson, RabéBjörsell, NiclasIsaksson, Magnus

Search in DiVA

By author/editor
Andersson, RabéBjörsell, NiclasIsaksson, Magnus
By organisation
Electronics
Health SciencesElectrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 268 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf