Open this publication in new window or tab >>2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
In cities where land availability is limited, rooftop photovoltaic panels (RPVs) offer high potential for satisfying concentrated urban energy demand by using only rooftop areas. However, accurate estimation of RPVs potential in relation to their spatial distribution is indispensable for successful energy planning. Classification, plane segmentation, and spatial analysis are three important aspects in this context. Classification enables extracting rooftops and allows for estimating solar energy potential based on existing training samples. Plane segmentation helps to characterize rooftops by extracting their planar patches. Additionally, spatial analyses enable the identification of rooftop utilizable areas for placing RPVs. This dissertation aims to address some issues associated with these three aspects, particularly (a) training support vector machines (SVMs) in large datasets, (b) plane segmentation of rooftops, and (c) identification of utilizable areas for RPVs. SVMs are among the most potent classifiers and have a solid theoretical foundation. However, they have high time complexity in their training phase, making them inapplicable in large datasets. Two new instance selection methods were proposed to accelerate the training phase of SVMs. The methods are based on locality-sensitive hashing and are capable of handling large datasets. As an application, they were incorporated into a rooftop extraction procedure, followed by plane segmentation. Plane segmentation of rooftops for the purpose of solar energy potential estimation should have a low risk of overlooking superstructures, which play an essential role in the placement of RPVs. Two new methods for plane segmentation in high-resolution digital surface models were thus developed. They have an acceptable level of accuracy and can successfully extract planar segments by considering superstructures. Not all areas of planar segments are utilizable for mounting RPVs, and some factors may further limit their useability. Two spatial methods for identifying RPV-utilizable areas were developed in this realm. They scrutinize extracted planar segments by considering panel installation regulations, solar irradiation, roof geometry, and occlusion, which are necessary for a realistic assessment of RPVs potential. All six proposed methods in this thesis were thoroughly evaluated, and the experimental results show that they can successfully achieve the objectives for which they were designed.
Abstract [sv]
I städer där marktillgången är begränsad erbjuder takmonterade solpaneler (eng. rooftop photovoltaic panels) ett attraktivt alternativ för att tillfredsställa höga energibehov. Noggrann värdering av deras potantial f förhållande till spatial utbredning och variation är dock oumbärlig för framgångsrik energi planering. För detta krävs klassificering och segmentering av plana ytor samt spatial analys. Klassificering möjliggör extrahering av hustak och uppskattning av solenergipotentialen baserat på befintliga träningsprov. Segmentering i plan hjälper till att karakterisera hustaken genom extrahering av deras plana segment och spatial analys möjliggör identifiering av användbara takytor för placering av takmonterade solpaneler. Denna avhandlings syfte ät att adressera olika problem associerade med dessa; särskilt: (a) träning av stödvektormaskiner (eng. support vector machines) för stora datamängder, (b) segmentering i plan av hustakspunkter och (c) identifiering av lämpliga ytor för placering av takmonterade solpaneler. Stödvektormaskiner tillhör de mest kraftfulla klassificeringsmetoderna och vilar på en solid teoretisk grund. Men på grund av högkomplexitet under träningsfasen är de tidskrävande, vilket gör dem olämpliga för stora datamängder. Två nya initiala urvalsmetoder (eng. instance selection methods) för data föresås för att påskynda träningsfasen i stödvektormaskiner. Metoderna är baserade på lokalitetskänslig hashning och kan hantera stora datamängder. De inkorpooreras i en applikation i form av extrahering av takyta föjlt av segmentering i plan. Segmentering av hustak för uppskattning av solenergipotential bör inkludera låg risk att förbise överbyggnader, som spelar en viktig roll vid placering av takmonterade solpaneler. Två nya metoder för segmentering i plan för högupplösta digitala ytmodeller har därför utvecklats. De har en acceptabel nivå av noggrannhet och kan framgångsrikt extrahera plana segment genom att ta hänsyn till överbyggnader. Alla ytor med extraherade plana segment är dock inte användbara för montering av takmonterade solpaneler, samtidigt som andra faktorer ytterligare kan begränsa ytornas användbarhet. Två spatiala metoder för att identifiera användbara takmonterade solpanelytor har utvecklats för detta ändamål. De granskar extraherade plana segment genom att ta hänsyn till regler för panelinstallationer, solinstrålning, takgeometri och ocklusion, vilket är nödvändigt för en realistisk bedömning av potentialen av takmonterade solpaneler. Samtliga sex föreslagna metoder i denna studie har utvärderats noggrant och de experimentella resultaten visar att de framgångsrikt kan uppnå de mål som de utformades för.
Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2022. p. 103
Series
Doctoral thesis ; 31
Keywords
Machine learning, Classification, Segmentation, Support vector machines, Instance selection, Rooftop plane segmentation, Photovoltaic panels, Utiliz-able rooftop areas, Geoinformatics, maskininlärning, klassificering, segmentering, stödvektormaskiner, urval av träningsdata, segmentering av takytor, solcellspaneler, utnyttjande av takytor, geoinformatik
National Category
Other Earth and Related Environmental Sciences Geosciences, Multidisciplinary Other Computer and Information Science
Research subject
Sustainable Urban Development
Identifiers
urn:nbn:se:hig:diva-39741 (URN)978-91-88145-93-2 (ISBN)978-91-88145-94-9 (ISBN)
Public defence
2022-11-18, Krusenstjernasalen. 23:213, Kungsbäcksvägen 47, Gävle, 09:00 (English)
Opponent
Supervisors
2022-10-272022-08-192023-02-17