hig.sePublications
Planned maintenance
A system upgrade is planned for 24/9-2024, at 12:00-14:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimal localisation of biofuel production on a European scale
Linkoping University.
International Institute for Applied Systems Analysis (IIASA), Austria.
Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling.ORCID iD: 0000-0001-9230-1596
International Institute for Applied Systems Analysis (IIASA), Austria.
2012 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 41, no 1, p. 462-472Article in journal (Refereed) Published
Abstract [en]

This paper presents the development and use of an optimisation model suitable for analysis of biofuel production scenarios in the EU, with the aim of examining second generation biofuel production. Two policy instruments are considered - targeted biofuel support and a CO2 cost. The results show that over 3% of the total transport fuel demand can be met by second generation biofuels at a cost of approximately 65-73 EUR/MWh. With current energy prices, this demands biofuel support comparable to existing tax exemptions (around 30 EUR/MWh), or a CO2 cost of around 60 EUR/t(CO2). Parameters having large effect on biofuel production include feedstock availability, fossil fuel price and capital costs. It is concluded that in order to avoid suboptimal energy systems, heat and electricity applications should also be included when evaluating optimal bioenergy use. It is also concluded that while forceful policies promoting biofuels may lead to a high biofuel share at reasonable costs, this is not a certain path towards maximised CO2 emission mitigation. Policies aiming to promote the use of bioenergy thus need to be carefully designed in order to avoid conflicts between different parts of the EU targets for renewable energy and CO2 emission mitigation. (C) 2012 Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
Elsevier , 2012. Vol. 41, no 1, p. 462-472
Keywords [en]
Biofuels, Bioenergy, Energy system optimisation, Energy policy, CO2 emissions
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:hig:diva-38351DOI: 10.1016/j.energy.2012.02.051ISI: 000304076800051Scopus ID: 2-s2.0-84859958732OAI: oai:DiVA.org:hig-38351DiVA, id: diva2:1648502
Available from: 2013-01-15 Created: 2022-03-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Dotzauer, Erik

Search in DiVA

By author/editor
Dotzauer, Erik
In the same journal
Energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf