hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Use of combined physical and statistical models for online applications in the pulp and paper industry
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik.ORCID iD: 0000-0001-8191-4901
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik.
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik.ORCID iD: 0000-0001-9230-1596
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik.ORCID iD: 0000-0002-7233-6916
2009 (English)In: Mathematical and Computer Modelling of Dynamical Systems, ISSN 1387-3954, E-ISSN 1744-5051, Vol. 15, no 5, p. 425-434Article in journal (Refereed) Published
Abstract [en]

This paper discusses the accuracy of different types of models. Statistical models are based on process data and/or observations from lab measurements. This class of models are called black box models. Physical models use physical relationships to describe a process. These are called white box models or first principle models. The third group is sometimes called grey box models, being a combination of black box and white box models. Here we discuss two examples of model types. One is a statistical model where an artificial neural network is used to predict NOx in the exhaust gases from a boiler at Mälarenergi AB in Västerås, Sweden. The second example is a grey box model of a continuous digester. The digester model includes mass balances, energy balances, chemical reactions and physical geometrical constraints to simulate the real digester. We also propose that a more sophisticated model is not required to increase the accuracy of the predicted measurements.

Place, publisher, year, edition, pages
Taylor & Francis , 2009. Vol. 15, no 5, p. 425-434
Keywords [en]
statistical models; physical models; pulp digester
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:hig:diva-38264DOI: 10.1080/13873950903375403ISI: 000274741800003Scopus ID: 2-s2.0-75349089565OAI: oai:DiVA.org:hig-38264DiVA, id: diva2:1649113
Available from: 2009-11-29 Created: 2022-04-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Avelin, AndersDotzauer, ErikDahlquist, Erik

Search in DiVA

By author/editor
Avelin, AndersDotzauer, ErikDahlquist, Erik
In the same journal
Mathematical and Computer Modelling of Dynamical Systems
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 126 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf