hig.sePublications
Planned maintenance
A system upgrade is planned for 24/9-2024, at 12:00-14:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aggregation Strategy on Federated Machine Learning Algorithm for Collaborative Predictive Maintenance
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics.ORCID iD: 0000-0002-4284-6691
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Electronics.ORCID iD: 0000-0001-5429-7223
2022 (English)In: Sensors, E-ISSN 1424-8220, Vol. 22, no 16, article id 6252Article in journal (Refereed) Published
Abstract [en]

Industry 4.0 lets the industry build compact, precise, and connected assets and also has made modern industrial assets a massive source of data that can be used in process optimization, defining product quality, and predictive maintenance (PM). Large amounts of data are collected from machines, processed, and analyzed by different machine learning (ML) algorithms to achieve effective PM. These machines, assumed as edge devices, transmit their data readings to the cloud for processing and modeling. Transmitting massive amounts of data between edge and cloud is costly, increases latency, and causes privacy concerns. To address this issue, efforts have been made to use edge computing in PM applications., reducing data transmission costs and increasing processing speed. Federated learning (FL) has been proposed a mechanism that provides the ability to create a model from distributed data in edge, fog, and cloud layers without violating privacy and offers new opportunities for a collaborative approach to PM applications. However, FL has challenges in confronting with asset management in the industry, especially in the PM applications, which need to be considered in order to be fully compatible with these applications. This study describes distributed ML for PM applications and proposes two federated algorithms: Federated support vector machine (FedSVM) with memory for anomaly detection and federated long-short term memory (FedLSTM) for remaining useful life (RUL) estimation that enables factories at the fog level to maximize their PM models’ accuracy without compromising their privacy. A global model at the cloud level has also been generated based on these algorithms. We have evaluated the approach using the Commercial Modular Aero-Propulsion System Simulation (CMAPSS) dataset to predict engines’ RUL Experimental results demonstrate the advantage of FedSVM and FedLSTM in terms of model accuracy, model convergence time, and network usage resources. 

Place, publisher, year, edition, pages
MDPI , 2022. Vol. 22, no 16, article id 6252
Keywords [en]
distributed machine learning algorithm; edge and fog computing; federated learning; resource allocation; aggregation strategy
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:hig:diva-39874DOI: 10.3390/s22166252ISI: 000846574100001PubMedID: 36016014Scopus ID: 2-s2.0-85137709592OAI: oai:DiVA.org:hig-39874DiVA, id: diva2:1692344
Funder
Region Gavleborg, 20202943Available from: 2022-09-01 Created: 2022-09-01 Last updated: 2024-01-10Bibliographically approved
In thesis
1. Collaborative Predictive Maintenance for Smart Manufacturing: From Wireless Control to Federated Learning
Open this publication in new window or tab >>Collaborative Predictive Maintenance for Smart Manufacturing: From Wireless Control to Federated Learning
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Industry 4.0 represents a significant shift in the industrial landscape, aimed at improving efficiency, productivity, and competitiveness. This shift involves the digitalization of industries, impacting manufacturing and maintenance processes. A pivotal element of this transformation is the development of Cyber-Physical Systems (CPS) that seamlessly connect the physical factory floor with the digital realm. These systems monitor real-time data from the physical world and prepare feedback from the digital space, necessitating the harmonious integration of computation and communication, especially through wireless technology. Simultaneously, Machine Learning (ML) methods are advancing across various domains. The proliferation of wireless sensors and the Internet of Things, particularly within the CPS framework, generates substantial data. To address challenges such as latency, device resource limitations, and privacy concerns associated with centralized cloud processing, there is a shift towards edge computing, enabling distributed learning algorithms.

This dissertation tackles these challenges with four innovative methods that combine wireless technology, control systems, and distributed ML in the context of Industry 4.0. These methods aim to harness the potential of this digital transformation, making Predictive Maintenance (PdM) in industries smarter and more efficient. The first method, parallel event-triggering, is designed for multi-agent systems in industrial environments. It utilizes distributed event-based state estimation to enhance control performance and reduce network resource consumption. The second and third methods are developed for collaborative PdM using wireless communication in a federated approach. The second method focuses on real-time anomaly detection while preserving asset privacy at the edge level, and the third method optimizes remaining useful life prediction from sequential data within a federated learning framework. Both federated approaches enhance efficiency, simplify communication, and improve local model convergence. The fourth method introduces an innovative approach to collaborative PdM, utilizing over-the-air computation at the edge level. This approach offers low latency and improved spectral efficiency. The optimization challenges at the edge level are addressed by using a modified gradient descent approach, which effectively handles noisy communication channels and improves the convergence of ML algorithms. All four methods proposed in this thesis underwent a comprehensive evaluation,and the experimental findings demonstrate their effectiveness in achieving their intended objectives.

Abstract [sv]

Industri 4.0 representerar en betydande förändring i det industriella landskapet i syfte att förbättra effektivitet, produktivitet och konkurrenskraft. Denna förändring innebär en digital transformation av industrier, vilket påverkar tillverknings- och underhållsprocesser. En central del av denna transformation är utvecklingen av Cyber-fysiska system (CFS) som sömnlöst kopplar sammandet fysiska fabriksgolvet med den digitala världen. Dessa system övervakar realtidsdata från den fysiska världen och analyser från den digitala sfären, vilket kräver harmonisk integration av beräkning och kommunikation, särskilt genom trådlös teknik. Samtidigt utvecklas maskininlärningsmetoder inom olika områden. Spridningen av trådlösa sensorer och Internet of Things, särskilt inom CFS-ramverket, genererar betydande data. För att hantera utmaningar som latens, begränsade resurser hos lokala enheter och integritetsbekymmer kopplade till centraliserade molntjänster sker en övergång till beräkningar på nätverkets kant, även kallat edge computing, vilket möjliggör distribuerade inlärningsalgoritmer.

Denna avhandling tacklar dessa utmaningar med fyra innovativa metoder som kombinerar trådlös teknik, styrsystem och distribuerad maskininlärning inom ramen för Industri 4.0. Dessa metoder syftar till att utnyttja potentialen i denna digitala transformation och göra prediktivt underhåll i industrier smartare och effektivare. Den första metoden, parallell händelseutlösning, är utformad för fleragentssystem i industriella miljöer. Den använder distribuerad händelsebaserad tillståndsestimering för att förbättra reglerprestanda och minska förbrukning av nätverksresurser. De andra och tredje metoderna är utvecklade för att prediktivt underhåll och trådlös kommunikation skall samarbeta med ett federativt tillvägagångssätt. Den andra metoden fokuserar på avvikelsedetektering i realtids samtidigt som dataintegriteten bevaras på edge-nivå, och den tredje metoden optimerar förutsägelse av kvarvarande användbar livslängd från sekventiella data inom en federativ inlärningsram. Båda federativa tillvägagångssätten förbättrar effektiviteten, förenklar kommunikationen och förbättrar lokalt konvergensen av modeller. Den fjärde metoden introducerar ett innovativt tillvägagångssätt för samarbetsbaserat prediktivt underhåll, där over-the-air beräkningar används på edge-nivån. Denna metod erbjuder låg latens och effektivare utnyttjande av frekvensband. De utmaningar som finns på edge-nivån hanteras genom att använda en modifierad gradient descent metod, som effektivt hanterar brusiga kommunikationskanaler och förbättrar konvergensen av ML-algoritmer. Alla fyra metoder som föreslås i denna avhandling genomgick en omfattande utvärdering, och de experimentella resultaten visar deras effektivitet för att uppnå sina avsedda mål.

Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2024. p. 94
Series
Doctoral thesis ; 42
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:hig:diva-43564 (URN)978-91-89593-23-7 (ISBN)978-91-89593-24-4 (ISBN)
Public defence
2024-04-04, 12:108, Kungsbäcksvägen 47, Gävle, 13:00 (English)
Opponent
Supervisors
Available from: 2024-03-14 Created: 2024-01-10 Last updated: 2024-03-14Bibliographically approved

Open Access in DiVA

fulltext(5272 kB)339 downloads
File information
File name FULLTEXT01.pdfFile size 5272 kBChecksum SHA-512
6b4ce2eb4563df4ad7889bd91d9c8e929cfc8bacb51a33e204b597d08d2238836e23c6d2e7aead29444324b217c66e0b60353441fcae0e7f2e9179f4ded70595
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Bemani, AliBjörsell, Niclas

Search in DiVA

By author/editor
Bemani, AliBjörsell, Niclas
By organisation
Electronics
In the same journal
Sensors
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 341 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 366 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf