hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Patchworking the Log-critical locus of planar curves
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Electrical Engineering, Mathematics and Science, Mathematics. Department of Electrical Engineering, Mathematics and Science , University of Gävle , 80176 Gävle , Sweden.ORCID iD: 0000-0001-8640-5591
Laboratoire Paul Painlevé , Université de Lille , CNRS, UMR 8524, 59000 Lille , France.
2022 (English)In: Journal für die Reine und Angewandte Mathematik, ISSN 0075-4102, E-ISSN 1435-5345, Vol. 792, p. 115-143Article in journal (Refereed) Published
Abstract [en]

We establish a patchworking theorem à la Viro for the Log-critical locus of algebraic curves in (C∗)2(ℂ∗)2 . As an application, we prove the existence of projective curves of arbitrary degree with smooth connected Log-critical locus. To prove our patchworking theorem, we study the behaviour of Log-inflection points along families of curves defined by Viro polynomials. In particular, we prove a generalisation of a theorem of Mikhalkin and the second author on the tropical limit of Log-inflection points.

Place, publisher, year, edition, pages
de Gruyter , 2022. Vol. 792, p. 115-143
National Category
Geometry
Identifiers
URN: urn:nbn:se:hig:diva-40038DOI: 10.1515/crelle-2022-0054ISI: 000860857100001Scopus ID: 2-s2.0-85139511333OAI: oai:DiVA.org:hig-40038DiVA, id: diva2:1699786
Available from: 2022-09-29 Created: 2022-09-29 Last updated: 2022-11-15Bibliographically approved

Open Access in DiVA

fulltext(1354 kB)76 downloads
File information
File name FULLTEXT01.pdfFile size 1354 kBChecksum SHA-512
b93854c0876ec7dd3577accb1aae3cdf74f2a21c2a2ca6d53ff39f7492156cb7c1231034e2ea1fdf9bebf4a4e0795a149467744fca68b7dfbf259518882d4042
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Lang, Lionel

Search in DiVA

By author/editor
Lang, Lionel
By organisation
Mathematics
In the same journal
Journal für die Reine und Angewandte Mathematik
Geometry

Search outside of DiVA

GoogleGoogle Scholar
Total: 76 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf