hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solvent Dependence of Conformational Distribution, Molecular Geometry, and Electronic Structure in Adenosine
Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden.
Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden.ORCID iD: 0000-0001-8748-3890
2009 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 113, no 4, p. 1012-1021Article in journal (Refereed) Published
Abstract [en]

Solvation dynamics of adenosine in water and chloroform solvents under ambient conditions has been investigated using both force-field molecular dynamics (MD) and first-principles Car−Parrinello molecular dynamics (CPMD) calculations. First, the solvent dependence of the equilibria between anti−syn forms, C(3′)-endo−C(2′)−endo conformations, and carbinol group rotamers has been discussed from MD calculations. We find that in both the solvents the adenosine molecule can remain either in anti or syn conformations. But, the anti−syn interconversion occurs relatively faster in water solvent than in chloroform solvent. Because of the relatively larger time scale for the interconversion, anti and syn conformational states of adenosine are studied separately in water and chloroform solvents using CPMD calculations. The dipole moments calculated from CPMD and MD calculations for adenosine in water are significantly larger than in chloroform solvent. On the basis of the CPMD calculations, the syn form of adenosine in water has a larger dipole moment than the anti form. Moreover, the molecular geometry of anti and syn forms of adenosine in these two solvents is reported. We report a remarkable solvent effect on the geometry of the anti form of the adenosine, which is attributed to differences in the intermolecular and intramolecular hydrogen-bonding stabilization. We also report the solvent effect on the frontier Kohn−Sham orbitals and energy gaps for anti−syn conformational states. Finally, we report the solvation shell structure of adenosine in both the solvents, and we find that the solvent−solute interaction is site-specific in the case of water while in chloroform solvent the interaction is globular isotropic in nature.

Place, publisher, year, edition, pages
ACS , 2009. Vol. 113, no 4, p. 1012-1021
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:hig:diva-40427DOI: 10.1021/jp803058gOAI: oai:DiVA.org:hig-40427DiVA, id: diva2:1710629
Available from: 2022-11-14 Created: 2022-11-14 Last updated: 2022-11-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Hugosson, Håkan Wilhelm

Search in DiVA

By author/editor
Hugosson, Håkan Wilhelm
In the same journal
Journal of Physical Chemistry B
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf