The purpose of the paper is to examine the relation between urban morphology, wind direction and air flow rates. In the study a highly idealized city model was used consisting of a circular block divided into two or four equally large sectors. Wind tunnel experiments and CFD predictions have been conducted. The interaction between the atmospheric boundary layer and a city is considered to be both a function of the overall shape and the internal resistance to the flow caused by the friction when the wind flows over the urban surfaces. Flow along the streets is generated by pressure differences. In the wind tunnel, velocity measurements have been recorded in the streets at several points and pressure on the ground was registered in 400 points. The wind tunnel measurements were used to validate the CFD model. The CFD predictions provided complete flow and pressure fields for different configurations and wind directions. The flow balance is presented considering both the horizontal air flow and the vertical air flow (subsidence and updraft). Special attention was on the pressure distribution at ground level (pressure footprint), which is believed to provide valuable information that can be used for qualitative city ventilation analyses.