Millimeter wave (mmWave) wireless technology is primarily considered for low latency communication in fifth-generation mobile technology (5G) and has the potential to revolutionize industrial automation and manufacturing processes. This article investigates multipath radio propagation in indoor industrial environments at the 24 GHz industrial, scientific and medical (ISM) mmWave frequency band. The wideband radio channel measurements were carried out in four different industrial environments in Sweden. The measurements were conducted using an affordable but highly competent in-house assembled mmWave testbed, reusing radio instruments available in our lab. The measurement environments were chosen based on their radio wave reflection characteristics. The multipath propagation characteristics are analyzed with respect to the power delay profile (PDP), coherence bandwidth, and root mean square (RMS) delay spread. Additionally, the Saleh-Valenzuela model parameters are estimated for these industrial environments.