Conventional concrete (CC) is for decades the most used construction material worldwide thanks to its good properties such as high strength, high thermal mass, low noise transmission, and high fire resistance. Cement is an important component of CC. The cement industry is a significant source of emissions and accounts for roughly 8% of the world’s CO2 emissions today, which means all improvements that can be made within this single industry benefit the emissions reduction goals. Green concrete (GC) is the development in the field of construction technology, which offers a more sustainable and eco-friendly solution as a building material. GC deals with the mentioned negative issue of cement, since it offers new cementitious matrices where some part of the Portland cement of CC is being replaced by some supplementary cementitious materials, such as industrial by-products, agricultural wastes, or municipal wastes. This paper studies the properties, structural performance, and environmental benefits of GCs. The investigation is done through a literature review, identifying the knowledge gaps, and providing suggestions for further research. The results indicate that there is a good potential to significantly reduce the climate impact of CC by using alternative binder materials in GC.