hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterizing the livingness of geographic space across scales using global nighttime light data
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.ORCID iD: 0000-0003-0794-0110
Urban Governance and Design Thrust, Society Hub, Hong Kong University of Science and Technology (Guangzhou), China.ORCID iD: 0000-0002-2337-2486
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Geospatial Sciences.ORCID iD: 0000-0003-4739-7781
Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden.ORCID iD: 0000-0003-0085-5829
2024 (English)In: International Journal of Applied Earth Observation and Geoinformation, ISSN 1569-8432, E-ISSN 1872-826X, Vol. 133, article id 104136Article in journal (Refereed) Published
Abstract [en]

The hierarchical structure of geographic or urban space can be well-characterized by the concept of living structure, a term coined by Christopher Alexander. All spaces, regardless of their size, possess certain degrees of livingness that can be mathematically quantified. While previous studies have successfully quantified the livingness of small spaces such as images or artworks, the livingness of geographic space has not yet been characterized in a recursive manner. Zipf’s law has been observed in urban systems and intra-urban structures. However, whether Zipf’s law is applicable to the hierarchical substructures of geographic space has rarely been investigated. In this study, we recursively extract the substructures of geographic space using global nighttime light imagery. We quantify the livingness of global cities considering the number of substructures (S) and their inherent hierarchy (H). We further investigate the scaling properties of the extracted substructures across scales and the relationships between livingness and population for global cities. The results demonstrate that all substructures of global cities form a living structure that conforms to Zipf’s law. The degree of livingness better captures population distribution than nighttime light intensity values for the global cities. This study contributes in three aspects: First, it considers global cities as a whole to quantify spatial livingness. Second, it applies the concept of livingness to cities to better capture the spatial structure of the population using nighttime light data. Third, it introduces a novel method to recursively extract substructures from nighttime images, offering a valuable tool to investigate urban structures across multiple spatial scales.

Place, publisher, year, edition, pages
Elsevier , 2024. Vol. 133, article id 104136
Keywords [en]
Nighttime light imagery, Living structure, Global cities, Zipf’s law, Urban structure
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:hig:diva-45431DOI: 10.1016/j.jag.2024.104136ISI: 001308019900001Scopus ID: 2-s2.0-85202830695OAI: oai:DiVA.org:hig-45431DiVA, id: diva2:1895962
Available from: 2024-09-09 Created: 2024-09-09 Last updated: 2025-03-25Bibliographically approved
In thesis
1. Unveiling the Complexity of Geographic Space from the Lens of Living Structure Using Geospatial Big Data
Open this publication in new window or tab >>Unveiling the Complexity of Geographic Space from the Lens of Living Structure Using Geospatial Big Data
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The complexity of geographic space can be better understood through the concept of living structure, which consists of numerous interconnected smaller features and a few larger ones distributed across multiple spatial scales. The rise of geospatial big data presents unprecedented opportunities to explore this complexity, offering finer spatial resolution for analyzing urban structures and human activities. This thesis leverages diverse geospatial datasets – including street nodes, building footprints, points of interest, social media check-ins, andnighttime light imagery – to examine urban forms and the intricate patterns of geographic features and their underlying human activities across scales. To address key challenges in geographic analysis in the era of big data, this research adopts a topological representation of living structure, inspired by Christopher Alexander’s organic view of space to characterize the complexity of space. Under this perspective, geographic space is not neutral or lifeless but rather an organized complexity that can be mathematically quantified.

The findings reveal a strong correlation between human activities, as indicated by social media check-ins, and the spatial distribution of street nodes and building footprints at various scales. To account for the heterogeneous spatial distribution of geographic features, an enhanced spatial clustering method is introduced. This study also quantifies the structural complexity of intra-urban spaces and identifies urban centers by integrating multi-source geospatial data. Furthermore, the complexity of geographic space is analyzed globally usingnight time light data, leveraging recursively generated substructures. By adopting a holistic, multi-scale perspective on geographic space, the concept of living structure provides a novel framework for understanding complex human activity patterns in the era of big data. This research offers new insights into the spatial organization of cities and contributes to the development of sustainable urban environments.

Abstract [sv]

Det geografiska rummets komplexitet kan förstås bättre genom konceptet living structure, som består av många sammanlänkade mindre element och ett fåtal större, fördelade över flera rumsliga skalor. Framväxten av geospatiala big data erbjuder enastående möjligheter att utforska denna komplexitet och möjliggör analyser av urbana strukturer och mänskliga aktiviteter med högre rumslig upplösning. Denna avhandling använder olika geospatiala datakällor– inklusive gatunoder, byggnadsfotavtryck, intressepunkter, incheckningar på sociala medier och nattljusbilder – för att undersöka stadsformers och geografiska företeelsers komplexa mönster samt de bakomliggande mänskliga aktiviteterna över skalor. För att hantera centrala utmaningar inom geografisk analys i big data-eran tillämpar denna studie en topologisk representation av living structure, inspirerad av Christopher Alexanders organiska syn på rummet. Ur detta perspektiv är det geografiska rummet inte neutralt eller livlöst, utan en intrikat organiserad komplexitet som kan kvantifieras.

Resultaten visar ett starkt samband mellan mänskliga aktiviteter, representerade genom incheckningar på sociala medier, och den rumsliga fördelningen av gatunoder och byggnadsfotavtryck på olika skalor. För att hantera den heterogena rumsliga fördelningen av geografiska företeelser introduceras en förbättrad metod för rumslig klustring. Studien kvantifierar även den strukturella komplexiteten – eller livfullheten – hos intra-urbana rum och identifierar stadscentra genom att integrera geospatial data från flera källor. Vidare analyseras det geografiska rummets komplexitet globalt med hjälp av nattljusdata och rekursivt genererade delstrukturer. Genom att anta ett holistiskt perspektiv på geografiskt rum över alla skalor erbjuder konceptet living structure en ny ram för att förstå mänskliga aktivitetmönster i big data-eran. Denna forskning bidrar med nya insikter i städers rumsliga organisering och ger vägledning för utvecklingen av hållbara urbana miljöer.

Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2025. p. 68
Series
Doctoral thesis ; 63
Keywords
Living structure, topological representation, human activities, natural cities, urban centers, organized complexity, big data, Living structure, topologisk representation, mänskliga aktiviteter, naturliga städer, stadskärnor, organiserad komplexitet, big data
National Category
Other Geographic Studies Social and Economic Geography
Research subject
Sustainable Urban Development
Identifiers
urn:nbn:se:hig:diva-46659 (URN)978-91-89593-68-8 (ISBN)978-91-89593-69-5 (ISBN)
Public defence
2025-06-03, 12:108, Högskolan i Gävle, 801 76 Gävle, Gävle, 10:00 (English)
Opponent
Supervisors
Available from: 2025-05-13 Created: 2025-03-25 Last updated: 2025-05-13Bibliographically approved

Open Access in DiVA

fulltext(13037 kB)174 downloads
File information
File name FULLTEXT01.pdfFile size 13037 kBChecksum SHA-512
1bcee7eaa2b5070e28867b79ab816d093bf31dc63ee2ee5b4d321a2c0669d306945f36caae4626f1f384f6455cd9686ef613ace81d700427931de9cad43a6bc0
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Ren, ZhengJiang, Binde Rijke, ChrisSeipel, Stefan

Search in DiVA

By author/editor
Ren, ZhengJiang, Binde Rijke, ChrisSeipel, Stefan
By organisation
Geospatial Sciences
In the same journal
International Journal of Applied Earth Observation and Geoinformation
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 174 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 372 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf