With the fast-growing use of nanoparticles (NPs) in a wide range of production andmanufacturing processes, and great health and environmental risks associated to NPs, it is important totreat the industry-produced NPs in a proper way. Ventilation of industrial workplaces lies within theconcept of sustainability challenges for the development of nanoproducts. Due to the decreased grainsize of material to nano limits and thus the appearance of either new or changed properties, health riskof workers in such environments is critical concerning the complicated and unknown characteristicsof nanoparticles. There is great evidence over the past few years that ultrafine particles and especiallyNPs in the breathing air are strong toxins. Different mitigation measures for air-borne nanoparticles inindustrial workplaces are substitution, engineering controls such as ventilation and provision of personalprotective equipment. In this paper selection criteria for ventilation systems and different ventilationmethods (hood ventilation and global enclosure/room ventilation systems) as engineering controlsof nanoparticles within industrial enclosures will be reviewed. Novel methods for improvement ofventilation efficiency in general and industrial work places with an eye on ventilation of nanoparticleswill be presented.