When estimating treatment effect on count outcome of given population, one uses different models in different studies, resulting in non-comparable measures of treatment effect. Here we show that the marginal rate differences in these studies are comparable measures of treatment effect. We estimate the marginal rate differences by log-linear models and show that their finite-sample maximum-likelihood estimates are unbiased and highly robust with respect to effects of dispersing covariates on outcome. We get approximate finite-sample distributions of these estimates by using the asymptotic normal distribution of estimates of the log-linear model parameters. This method can be easily applied to practice.