Integral nonlinearity (INL) is used for the postcorrection of pipeline analog-digital converters (ADCs). An input-frequency-dependent INL model is developed for the compensation. The model consists of a static term that is dependent on the ADC output code, and a dynamic term that has an additional dependence on the input signal frequency. The INL model is subtracted from the digital output for postcorrection. The static compensation is implemented with a look-up-table. The dynamic calibration is performed by a bank of frequency domain filters using an overlap-add structure. Two ADCs of the same type (Analog Devices AD9430) are compensated for in the first three Nyquist bands. The performance improvements in terms of spurious-free dynamic range and intermodulation distortion are investigated. Using the proposed method, improvements up to 17 dB are reported in favorable scenarios.