hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Eigenwaves in waveguides with dielectric inclusions: completeness
Karlstads universitet.
Penza State University, Penza, Ryssland.
2014 (English)In: Applicable Analysis, ISSN 0003-6811, E-ISSN 1563-504X, Vol. 93, no 9, 1824-1845 p.Article in journal (Refereed) Published
Abstract [en]

We formulate the definition of eigenwaves and associated waves in a nonhomogeneously filled waveguide using the system of eigenvectors and associated vectors of a pencil and prove its double completeness with a finite defect or without a defect. Then, we prove the completeness of the system of transversal components of eigenwaves and associated waves as well as the ‘mnimality’ of this system and show that this system is generally not a Schauder basis. This work is a continuation of the paper Eigenwaves in waveguides with dielectric inclusions: spectrum. Appl. Anal. 2013. doi:10.1080/00036811.2013.778980 by Y. Smirnov and Y. Shestopalov. Therefore, we omit the problem statements and all necessary basic definitions given in the previous paper.

Place, publisher, year, edition, pages
2014. Vol. 93, no 9, 1824-1845 p.
Keyword [en]
eigenwave, waveguide, pencil, spectrum, completeness, basis
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:hig:diva-18041DOI: 10.1080/00036811.2013.850494ISI: 000339059500003Scopus ID: 2-s2.0-84903761235OAI: oai:DiVA.org:hig-18041DiVA: diva2:765324
Available from: 2014-11-22 Created: 2014-11-22 Last updated: 2016-11-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Shestopalov, Yury
In the same journal
Applicable Analysis
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 163 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf