Since the 1960’s, robotics has focused on manufacturing robots for use in industrial applications to perform operations such as handling, joining, inspection, machining, spot welding, assembling, etc. In order for the robots to perform their required tasks in these classical applications, the “workpiece” has had to be brought to the robots. Since the mid-1980s, interest has grown in developing new robots for applications where tasks need to be performed in-situ locations demanding that problems of localisation and locomotion are also important. In these scenarios, robot mobility is the key capability, and this can be realised in a variety of ways, e.g., via wheels, tracks, legs, etc. In some applications, the mobile robots also need a climbing capability due to their working environments and tasks to be performed (e.g., inspecting the external walls of tall buildings); these requirements present interesting challenges as seen in the area of climbing and walking robots focussed on by the EC funded Network of Excellence CLAWAR (climbing and walking robots) coordinated by Professor Virk during 1996-2005. Researchers have used CLAWAR to discuss climbing AND walking AND running robots but in fact any form of robot mobility is relevant and presents interesting challenges for robotics.