A sensitive and label-free analytical approach for the detection of porcine circovirus type 2 (PCV2) instead of PCV2 antibody in serum sample was systematically investigated in this research based on surface plasmon resonance (SPR) with an establishment of special molecular identification membrane. The experimental device for constructing the biosensing analyzer is composed of an integrated biosensor, a home-made microfluidic module, and an electrical control circuit incorporated with a photoelectric converter. In order to detect the PCV2 using the surface plasmon resonance immunoassay, the mercaptopropionic acid has been used to bind the Au film in advance through the known form of the strong S-Au covalent bonds formed by the chemical radical of the mercaptopropionic acid and the Au film. PCV2 antibodies were bonded with the mercaptopropionic acid by covalent -CO-NH- amide bonding. For the purpose of evaluating the performance of this approach, the known concentrations of PCV2 Cap protein of 10 mu g/mL, 7.5 mu g/mL, 5 mu g/mL, 2.5 mu g/mL, 1 mu g/mL, and 0.5 mu g/mL were prepared by diluting with PBS successively and then the delta response units (Delta RUs) were measured individually. Using the data collected from the linear CCD array, the Delta RUs gave a linear response over a wide concentration range of standard known concentrations of PCV2 Cap protein with the R-Squared value of 0.99625. The theoretical limit of detection was calculated to be 0.04 mu g/mL for the surface plasmon resonance biosensing approach. Correspondingly, the recovery rate ranged from 81.0% to 89.3% was obtained. In contrast to the PCV2 detection kits, this surface plasmon resonance biosensing system was validated through linearity, precision and recovery, which demonstrated that the surface plasmon resonance immunoassay is reliable and robust. It was concluded that the detection method which is associated with biomembrane properties is expected to contribute much to determine the PCV2 in sample solutions instead of PCV2 antibody in serum samples quantitatively.