Classrooms normally host a large number of people and the heat generated provides a challenge cool. Traditional cooling methods by increased low temperature supply airflow rate or use of heat sinks are expensive and mostly inefficient. The strategy of controlled air movements in the occupied zone may prove cheaper and desirable. This research investigates recirculation of room air to provide intermittent velocity cooling in classrooms. The objective of this experiment was to assess how occupants perceive the recirculated intermittent air velocity conditions in classrooms and when the variations should be introduced in the room for optimal results. This was done with a between participant design, accessing how they perceived indoor air quality (IAQ) and the thermal comfort in two velocity conditions: constant low air velocity condition (< 0.15 m/s) and intermittent air velocity condition (0.4 m/s). As shown here; intermittent air velocity has a positive effect on the perceived thermal comfort (p < 0.04) and perception of air quality: less draughty and improved humid perception. The participants perceived the conditions with intermittent velocity to give comfortable feelings and better air quality. The variations also showed better performance if they were provided at the start of occupancy as opposed to during or after a temperature build up. This strategy can be used in environments where it is rather uneconomical to provide cooling like spaces hosting a group of people: movie theatres, auditoriums, classrooms and perhaps in restaurants.