hig.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Improved Energy Efficiency and Fuel Substitution in the Iron and Steel Industry
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem.
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

IPCC reported in its climate change report 2013 that the atmospheric concentrations of the greenhouse gases (GHG) carbon dioxide (CO2), methane, and nitrous oxide now have reached the highest levels in the past 800,000 years. CO2 concentration has increased by 40% since pre-industrial times and the primary source is fossil fuel combustion. It is vital to reduce anthropogenic emissions of GHGs in order to combat climate change. Industry accounts for 20% of global anthropogenic CO2 emissions and the iron and steel industry accounts for 30% of industrial emissions. The iron and steel industry is at date highly dependent on fossil fuels and electricity. Energy efficiency measures and substitution of fossil fuels with renewable energy would make an important contribution to the efforts to reduce emissions of GHGs.

This thesis studies energy efficiency measures and fuel substitution in the iron and steel industry and focuses on recovery and utilisation of excess energy and substitution of fossil fuels with biomass. Energy systems analysis has been used to investigate how changes in the iron and steel industry’s energy system would affect the steel plant’s economy and global CO2 emissions. The thesis also studies energy management practices in the Swedish iron and steel industry with the focus on how energy managers think about why energy efficiency measures are implemented or why they are not implemented. In-depth interviews with energy managers at eleven Swedish steel plants were conducted to analyse energy management practices.

In order to show some of the large untapped heat flows in industry, excess heat recovery potential in the industrial sector in Gävleborg County in Sweden was analysed. Under the assumptions made in this thesis, the recovery output would be more than three times higher if the excess heat is used in a district heating system than if electricity is generated. An economic evaluation was performed for three electricity generation technologies for the conversion of low-temperature industrial excess heat. The results show that electricity generation with organic Rankine cycles and phase change material engines could be profitable, but that thermoelectric generation of electricity from low-temperature industrial excess heat would not be profitable at the present stage of technology development. With regard to fossil fuels substituted with biomass, there are opportunities to substitute fossil coal with charcoal in the blast furnace and to substitute liquefied petroleum gas (LPG) with bio-syngas or bio synthetic natural gas (bio-SNG) as fuel in the steel industry’s reheating furnaces. However, in the energy market scenarios studied, substituting LPG with bio-SNG as fuel in reheating furnaces at the studied scrap-based steel plant would not be profitable without economic policy support. The development of the energy market is shown to play a vital role for the outcome of how different measures would affect global CO2 emissions.

Results from the interviews show that Swedish steel companies regard improved energy efficiency as important. However, the majority of the interviewed energy managers only worked part-time with energy issues and they experienced that lack of time often was a barrier for successful energy management. More efforts could also be put into engaging and educating employees in order to introduce a common practice of improving energy efficiency at the company.

Abstract [sv]

Halterna av växthusgaserna koldioxid (CO2), metan och kväveoxider har under de senaste 800 000 åren aldrig varit högre i atmosfären än vad de är idag. Detta resultat redovisades i IPCCs klimatrapport år 2013. CO2-koncentrationen har ökat med 40 % sedan förindustriell tid och denna ökning beror till största delen på förbränning av fossila bränslen. Ökade koncentrationer av växthusgaser leder till högre global medeltemperatur vilket i sin tur resulterar i klimatförändringar.  För att bromsa klimatförändringarna är det viktigt att vi arbetar för att minska utsläppen av växthusgaser. Industrin står för 20 % av de globala utsläppen av CO2 och järn- och stålindustrin står för 30 % av industrins utsläpp. Järn- och stålindustrin är i dag till stor del beroende av fossila bränslen och el för sin energiförsörjning. Energieffektiviseringsåtgärder och byte av fossila bränslen mot förnybar energi i järn- och stålindustrin skulle kunna bidra till minskade utsläpp av växthusgaser.

Denna avhandling studerar åtgärder för effektivare energianvändning och möjligheter för bränslebyte i järn- och stålindustrin. Avhandlingen fokuserar på återvinning och utnyttjande av överskottsenergier och ersättning av fossila bränslen med biomassa. Energisystemanalys har använts för att undersöka hur förändringar i järn- och stålindustrins energisystem skulle påverka ekonomin och de globala utsläppen av CO2. Avhandlingen studerar också betydelsen av energiledning och nätverkande för att uppnå en effektivare energianvändning. Fokus har här varit på att studera hur energiansvariga resonerar kring varför energieffektiviseringsåtgärder genomförs eller varför de inte genomförs. Djupintervjuer med energiansvariga vid elva svenska stålverk genomfördes för att analysera denna fråga.

För att ge ett exempel på den stora outnyttjade potentialen av överskottsvärme från industrin analyserades potentialen i Gävleborgs län. Möjligheterna att använda överskottsvärmen som fjärrvärme eller för att producera el analyserades. Här visar resultaten att fjärrvärmeproduktionen skulle bli mer än tre gånger så stor som elproduktionen. En ekonomisk utvärdering gjordes där tre tekniker för produktion av el från lågtempererad industriell överskottsvärme jämfördes. Resultaten visar att elproduktion med organisk Rankine-cykel eller en så kallad fasändringsmaterialmotor kan vara lönsam, men att termoelektrisk elproduktion inte är lönsam med dagens teknik och prisnivåer. Det är möjligt att ersätta en del av det fossila kolet i masugnen med träkol och på detta sätt introducera förnybar energi i stålindustrin. Man kan också ersätta gasol som används som bränsle i stålindustrins värmningsugnar med syntesgas eller syntetisk naturgas (SNG) som produceras genom förgasning av biomassa. Under de antaganden som gjorts i avhandlingen skulle det dock inte vara lönsamt för det skrotbaserade stålverk som studerats att ersätta gasolen med bio-SNG. För att uppnå lönsamhet behövs i detta fall ekonomiska styrmedel. Hur olika åtgärder påverkar de globala utsläppen av CO2 beror till stor del på hur framtidens energimarknad ser ut. Elproduktion från industriell överskottsvärme skulle minska de globala CO2-utsläppen i alla scenarier som studerats, men för de andra åtgärderna varierar resultaten beroende på vilka antaganden som gjorts. Resultaten från intervjustudien visar att svensk stålindustri anser att energifrågan är viktig, men det finns fortfarande mycket att göra för att effektivisera energianvändningen i denna sektor. Flera av de intervjuade arbetade bara deltid med energifrågor och de upplevde att tidsbrist hindrade dem från ett effektivt energiledningsarbete. En rekommendation till företagen är därför att anställa en energiansvarig på heltid och/eller fler personer som kan arbeta med energifrågor. Det bör också läggas mer resurser på att engagera och utbilda anställda för att på så sätt introducera en företagskultur som främjar effektiv energianvändning.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press , 2014. , p. 97
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1586
Keywords [en]
iron and steel industry, energy efficiency, CO2 emissions, fuel substitution, fuel switch, excess heat, biomass gasification, bio-syngas, synthetic natural gas, SNG, energy market scenarios, energy management, barriers, driving forces
Keywords [sv]
järn- och stålindustrin, energieffektivisering, CO2-utsläpp, bränslebyte, överskottsvärme, restvärme, förgasning, bio-syntesgas, syntetisk naturgas, SNG, energimarknadsscenarier, energiledning, hinder, drivkrafter
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:hig:diva-18937DOI: 10.3384/diss.diva-105849ISBN: 978-91-7519-367-0 (print)OAI: oai:DiVA.org:hig-18937DiVA, id: diva2:786290
Public defence
2014-04-29, ACAS, A-huset, Campus Valla, 09:40 (Swedish)
Opponent
Supervisors
Available from: 2015-02-05 Created: 2015-02-05 Last updated: 2021-10-01Bibliographically approved
List of papers
1. Options for the Swedish steel industry: Energy efficiency measures and fuel conversion
Open this publication in new window or tab >>Options for the Swedish steel industry: Energy efficiency measures and fuel conversion
2011 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 36, no 1, p. 191-198Article in journal (Refereed) Published
Abstract [en]

The processes of iron and steel making are energy intensive and consume large quantities of electricity and fossil fuels. In order to meet future climate targets and energy prices, the iron and steel industry has to improve its energy and resource efficiency. For the iron and steel industry to utilize its energy resources more efficiently and at the same time reduce its CO2 emissions a number of options are available. In this paper, opportunities for both integrated and scrap-based steel plants are presented and some of the options are electricity production, fuel conversion, methane reforming of coke oven gas and partnership in industrial symbiosis. The options are evaluated from a system perspective and more specific measures are reported for two Swedish case companies: SSAB Strip Products and Sandvik AB. The survey shows that both case companies have great potentials to reduce their CO2 emissions.

Keywords
Iron and steel industry, Energy efficiency, Fuel conversion, Industrial symbiosis, Excess energy, CO2 emissions
National Category
Energy Systems
Identifiers
urn:nbn:se:hig:diva-18938 (URN)10.1016/j.energy.2010.10.053 (DOI)000286781800021 ()
Available from: 2015-02-05 Created: 2015-02-05 Last updated: 2021-10-01Bibliographically approved
2. Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction
Open this publication in new window or tab >>Technologies for utilization of industrial excess heat: Potentials for energy recovery and CO2 emission reduction
2014 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 77, p. 369-379Article in journal (Refereed) Published
Abstract [en]

Industrial excess heat is a large untapped resource, for which there is potential for external use, which would create benefits for industry and society. Use of excess heat can provide a way to reduce the use of primary energy and to contribute to global CO2 mitigation. The aim of this paper is to present different measures for the recovery and utilization of industrial excess heat and to investigate how the development of the future energy market can affect which heat utilization measure would contribute the most to global CO2 emissions mitigation. Excess heat recovery is put into a context by applying some of the excess heat recovery measures to the untapped excess heat potential in Gavleborg County in Sweden. Two different cases for excess heat recovery are studied: heat delivery to a district heating system and heat-driven electricity generation. To investigate the impact of excess heat recovery on global CO2 emissions, six consistent future energy market scenarios were used. Approximately 0.8 TWh/year of industrial excess heat in Gavleborg County is not used today. The results show that with the proposed recovery measures approximately 91 GWh/year of district heating, or 25 GWh/year of electricity, could be supplied from this heat. Electricity generation would result in reduced global CO2 emissions in all of the analyzed scenarios, while heat delivery to a DH system based on combined heat and power production from biomass would result in increased global CO2 emissions when the CO2 emission charge is low. 

Keywords
Industrial excess heat, Heat recovery, Electricity generation, District heating, CO2 emission, Energy market scenarios
National Category
Energy Engineering
Identifiers
urn:nbn:se:hig:diva-18394 (URN)10.1016/j.enconman.2013.09.052 (DOI)000330494600041 ()2-s2.0-84887006516 (Scopus ID)
Available from: 2014-12-10 Created: 2014-12-10 Last updated: 2018-03-13Bibliographically approved
3. Electricity generation from low-temperature industrial excess heat: an opportunity for the steel industry
Open this publication in new window or tab >>Electricity generation from low-temperature industrial excess heat: an opportunity for the steel industry
2014 (English)In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 7, no 2, p. 203-215Article in journal (Refereed) Published
Abstract [en]

Awareness of climate change and the threat of rising energy prices have resulted in increased attention being paid to energy issues and industry seeing a cost benefit in using more energy-efficient production processes. One energy-efficient measure is the recovery of industrial excess heat. However, this option has not been fully investigated and some of the technologies for recovery of excess heat are not yet commercially available. This paper proposes three technologies for the generation of electricity from low-temperature industrial excess heat. The technologies are thermoelectric generation, organic Rankine cycle and phase change material engine system. The technologies are evaluated in relation to each other, with regard to temperature range of the heat source, conversion efficiency, capacity and economy. Because the technologies use heat of different temperature ranges, there is potential for concurrent implementation of two or more of these technologies. Even if the conversion efficiency of a technology is low, it could be worthwhile to utilise if there is no other use for the excess heat. The iron and steel industry is energy intensive and its production processes are often conducted at high temperatures. As a consequence, large amounts of excess heat are generated. The potential electricity production from low-temperature excess heat at a steel plant was calculated together with the corresponding reduction in global CO2 emissions.

Keywords
Low-temperature excess heat, Heat recovery, Electricity generation, Thermoelectric generator (TEG), Organic Rankine cycle (ORC), Phase change material (PCM) engine
National Category
Energy Engineering
Identifiers
urn:nbn:se:hig:diva-18375 (URN)10.1007/s12053-013-9218-6 (DOI)000332789200003 ()2-s2.0-84895881687 (Scopus ID)
Available from: 2014-12-09 Created: 2014-12-09 Last updated: 2018-03-13Bibliographically approved
4. Bio-syngas as fuel in the steel industry's heating furnaces: a case study on feasibility and CO2 mitigation effects
Open this publication in new window or tab >>Bio-syngas as fuel in the steel industry's heating furnaces: a case study on feasibility and CO2 mitigation effects
2011 (English)Conference paper, Published paper (Other academic)
Abstract [en]

Today, climate change is at the top of the political agenda. The European Commission has set atarget to reduce greenhouse gas emissions by 20 % by 2020, compared to 1990 levels. The steelindustry contributes significantly to industrial CO2 emissions, and thus it is important for thissector to find options to reduce its CO2 emissions. One alternative is to substitute fossil fuelswith biomass derived fuels; a promising option is to replace LPG (Liquefied Petroleum Gas) used asfuel in heating furnaces with bio-syngas produced through the gasification of biomass. This paperis a feasibility study of the implementation of this concept at a Swedish scrap-based steel plant.The results have been obtained through a case study approach with interviews and literaturesurveys. The study shows that if a fuel gas mixture of 50 vol% bio-syngas and 50 vol% LPG would beused, the global CO2 emissions would be reduced by 5,400 tonnes/year. Moreover, a full-scale fuelsubstitution would result in reduced emissions by 68,600 tonnes/year. In the case of a partial fuelsubstitution, a 4 MWth High Temperature Agent Gasifier (HTAG) is a suitable choice while a 45 MWthindirectly heated Circulating Fluidised Bed Gasifier (CFBG) would be suitable for a full-scale fuelsubstitution. In the case of a fuel switch, the lower heating value of syngas, compared to LPG, notonly implies that a different combustion technology must be used, but also that the exhaust gasflows will be substantially larger, and consequently the exhaust gas cleaning system must bedesigned with dimensions suitable for larger flows. Excess heat from the gasifier can be used forspace heating, but if the excess heat replaces district heating from a Combined Heat and Power(CHP) plant, the global CO2 emissionsreductions would be less than if the excess heat is not recovered.

Keywords
Fuel conversion, steel industry, biomass, case study, gasification
National Category
Energy Systems
Identifiers
urn:nbn:se:hig:diva-18939 (URN)
Conference
ECOS 2011 - 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, July 4-7, Novi Sad, Serbia
Available from: 2011-11-07 Created: 2015-02-05 Last updated: 2018-03-13Bibliographically approved
5. Bio-synthetic natural gas as fuel in steel industry reheating furnaces: A case study of economic performance and effects on global CO2 emissions
Open this publication in new window or tab >>Bio-synthetic natural gas as fuel in steel industry reheating furnaces: A case study of economic performance and effects on global CO2 emissions
2013 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 57, p. 699-708Article in journal (Refereed) Published
Abstract [en]

Climate change is of great concern for society today. Manufacturing industries and construction account for approximately 20% of global CO2 emissions and, consequently, it is important that this sector investigate options to reduce its CO2 emissions. One option could be to substitute fossil fuels with renewable alternatives. This paper describes a case study in which four future energy market scenarios predicting 2030 were used to analyse whether it would be profitable for a steel plant to produce bio-SNG (bio-synthetic natural gas) in a biomass gasifier and to substitute LPG (liquefied petroleum gas) with bio-SNG as fuel in reheating furnaces. The effects on global CO2 emissions were analysed from a perspective in which biomass is considered a limited resource. The results from the analysis show that investment in a biomass gasifier and fuel conversion would not be profitable in any of the scenarios. Depending on the scenario, the production cost for bio-SNG ranged between 22 and 36 EUR/GJ. Fuel substitution would reduce global CO2 emission if the marginal biomass user is a producer of transportation fuel. However, if the marginal user of biomass is a coal power plant with wood co-firing, the result would be increased global CO2 emissions.

Keywords
Biomass gasification, Steel industry, Case study, Fuel substitution, Bio-synthetic natural gas (bio-SNG), CO2 emissions
National Category
Energy Systems
Identifiers
urn:nbn:se:hig:diva-17820 (URN)10.1016/j.energy.2013.06.010 (DOI)000323355600073 ()2-s2.0-84880700175 (Scopus ID)
Available from: 2014-11-09 Created: 2014-11-09 Last updated: 2018-03-13Bibliographically approved
6. Improved energy efficiency within the Swedish steel industry: the importance of energy management and networking
Open this publication in new window or tab >>Improved energy efficiency within the Swedish steel industry: the importance of energy management and networking
2015 (English)In: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 8, no 4, p. 713-744Article in journal (Refereed) Published
Abstract [en]

The iron and steel industry is an energy-intensive industry that consumes a significant portion of fossil fuel and electricity production. Climate change, the threat of an unsecure energy supply and rising energy prices have emphasised the issue of improved energy efficiency in the iron and steel industry. However, an energy-efficiency gap is well recognised, i.e. cost-efficient measures are not implemented in practice. This study will go deeper into why this gap occurs by investigating energy-management practices at 11 iron and steel companies in Sweden. Energy managers at the steel plants were interviewed about how they perceived their own and their companies’ efforts to improve energy efficiency and how networking among energy managers influenced the efforts to improve energy efficiency. Reported barriers to improved energy efficiency were, for example, too long payback period, lack of profitability, lack of personnel, risk of production disruption, lack of time and lack of commitment. Only three out of the eleven companies had assigned a person to work full time with energy management, and some of the energy managers were frustrated with not having enough time to work with energy issues. Generally, the respondents felt that they had support from senior management and that energy issues were prioritised, but only a few of the companies had made great efforts to involve employees in improving energy efficiency. Networking among Swedish steel companies was administered by the Swedish Steel Producers’ Association, and their networking meetings contributed to the exchange of knowledge and ideas. In conclusion, Swedish steel companies regard improved energy efficiency as important but have much work left to do in this area. For example, vast amounts of excess heat are not being recovered and more efforts could be put into engaging employees and introducing a culture of energy efficiency.

Keywords
Energy efficiency, Energy management, Interviews, Iron and steel industry, Networking
National Category
Energy Engineering
Identifiers
urn:nbn:se:hig:diva-18485 (URN)10.1007/s12053-014-9317-z (DOI)000358046700006 ()2-s2.0-84937977406 (Scopus ID)
Funder
Swedish Energy Agency
Available from: 2014-12-10 Created: 2014-12-10 Last updated: 2018-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textFulltext

Authority records

Johansson, Maria

Search in DiVA

By author/editor
Johansson, Maria
By organisation
Energy system
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 1989 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf