hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Viewpoints on wind and air infiltration phenomena at buildings illustrated by field and model studies
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. (Indoor environment)ORCID iD: 0000-0003-1121-2394
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. (Indoor environment)ORCID iD: 0000-0002-0337-8004
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. (Indoor environment)
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.ORCID iD: 0000-0002-4007-3074
Show others and affiliations
2015 (English)In: Building and Environment, ISSN 0360-1323, E-ISSN 1873-684X, Vol. 92, p. 504-517Article in journal (Refereed) Published
Abstract [en]

Ventilation and infiltration caused by wind are difficult to predict because they are non-local phenomena: driving factors depend on the surrounding terrain and neighbouring buildings and on the building orientation with respect to the wind direction. Wind-driven flow through an opening is complex because wind can flow through the opening or around the building, in contrast to buoyancy driven flow. We explored wind and air infiltration phenomena in terms of pressure distributions on and around buildings, stagnation points, flow along façades, drag forces, and air flow through openings. Field trials were conducted at a 19th-century church, and wind tunnel tests were conducted using a 1:200 scale model of the church and other models with openings.

 

The locations of stagnation points on the church model were determined using particle image velocimetry measurements. Multiple stagnation points occurred. The forces exerted on the church model by winds in various directions were measured using a load cell. The projected areas affected by winds in various directions were calculated using a CAD model of the church. The area-averaged pressure difference across the church was assessed. A fairly large region of influence on the ground, caused by blockage of the wind, was revealed by testing the scale model in the wind tunnel and recording the static pressure on the ground at many points. The findings of this study are summarized as a number of steps that we suggest to be taken to improve analysis and predictions of wind driven flow in buildings.

Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 92, p. 504-517
Keywords [en]
Infiltration, Wind, Particle Image Velocimetry, Openings, Stagnation points, Drag force
National Category
Building Technologies
Identifiers
URN: urn:nbn:se:hig:diva-19278DOI: 10.1016/j.buildenv.2015.05.001ISI: 000358807800046Scopus ID: 2-s2.0-84930645066OAI: oai:DiVA.org:hig-19278DiVA, id: diva2:809423
Projects
Church project
Funder
Swedish Energy Agency, 34964-1Available from: 2015-05-04 Created: 2015-05-04 Last updated: 2020-11-16Bibliographically approved
In thesis
1. Natural Ventilation and Air Infiltration in Large Single‑Zone Buildings: Measurements and Modelling with Reference to Historical Churches
Open this publication in new window or tab >>Natural Ventilation and Air Infiltration in Large Single‑Zone Buildings: Measurements and Modelling with Reference to Historical Churches
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Natural ventilation is the dominating ventilation process in ancient buildings like churches, and also in most domestic buildings in Sweden and in the rest of the world. These buildings are naturally ventilated via air infiltration and airing. Air infiltration is the airflow through adventitious leakages in the building envelope, while airing is the intentional air exchange through large openings like windows and doors. Airing can in turn be performed either as single-sided (one opening) or as cross flow ventilation (two or more openings located on different walls). The total air exchange affects heating energy and indoor air quality. In churches, deposition of airborne particles causes gradual soiling of indoor surfaces, including paintings and other pieces of art. Significant amounts of particles are emitted from visitors and from candles, incense, etc. Temporary airing is likely to reduce this problem, and it can also be used to adjust the indoor temperature. The present study investigates mechanisms and prediction models regarding air infiltration and open-door airing by means of field measurements, experiments in wind tunnel and computer modelling.

In natural ventilation, both air infiltration and airing share the same driving forces, i.e. wind and buoyancy (indoor-outdoor temperature differences). Both forces turn out to be difficult to predict, especially wind induced flows and the combination of buoyancy and wind. In the first part of the present study, two of the most established models for predicting air infiltration rate in buildings were evaluated against measurements in three historical stone churches in Sweden. A correction factor of 0.8 is introduced to adjust one of the studied models (which yielded better predictions) for fitting the large single zones like churches. Based on field investigation and IR-thermography inspections, a detailed numerical model was developed for prediction of air infiltration, where input data included assessed level of the neutral pressure level (NPL). The model functionality was validated against measurements in one of the case studies, indicating reasonable prediction capability. It is suggested that this model is further developed by including a more systematic calibration system for more building types and with different weather conditions.

Regarding airing, both single-sided and cross flow rates through the porches of various church buildings were measured with tracer gas method, as well as through direct measurements of the air velocity in a porch opening. Measurement results were compared with predictions attained from four previously developed models for single‑sided ventilation. Models that include terms for wind turbulence were found to yield somewhat better predictions. According to the performed measurements, the magnitude of one hour single-sided open-door airing in a church typically yields around 50% air exchange, indicating that this is a workable ventilation method, also for such large building volumes. A practical kind of diagram to facilitate estimation of suitable airing period is presented.

The ability of the IDA Indoor Climate and Energy (IDA-ICE) computer program to predict airing rates was examined by comparing with field measurements in a church. The programs’ predictions of single-sided airflows through an open door of the church were of the same magnitude as the measured ones; however, the effect of wind direction was not well captured by the program, indicating a development potential.

Finally, wind driven air flows through porch type openings of a church model were studied in a wind tunnel, where the airing rates were measured by tracer gas. At single-sided airing, a higher flow rate was observed at higher wind turbulence and when the opening was on the windward side of the building, in agreement with field measurements. Further, the airing rate was on the order of 15 times higher at cross flow than at single-sided airing. Realization of cross flow thus seems highly recommendable for enhanced airing. Calibration constants for a simple equation for wind driven flow through porches are presented. The measurements also indicate that advection through turbulence is a more important airing mechanism than pumping.

 

The present work adds knowledge particularly to the issues of air infiltration and airing through doors, in large single zones. The results can be applicable also to other kinds of large single-zone buildings, like industry halls, atriums and sports halls.

Abstract [sv]

Naturlig ventilation är den dominerande ventilationsprocessen i äldre byggnader såsom kyrkor, och även i de flesta småhus i Sverige och övriga delar av världen. Luftinfiltration och vädring utgör viktiga komponenter i naturlig ventilation, där luftinfiltration är luftflöde genom oavsiktliga läckage i byggnadsskalet, medan vädring är avsiktligt luftutbyte genom stora öppningar såsom fönster och dörrar/portar. Vädring kan i sin tur ske ensidigt (genom en öppning) eller som tvärdrag (genom två eller flera öppningar belägna på olika ytterväggar). Det totala luftutbytet påverkar värmeförluster och inomhusluftens kvalité. I kyrkor orsakar avsättning av luftpartiklar en gradvis nedsmutsning av invändiga ytor, inklusive väggmålningar och andra konstföremål. Betydande mängder partiklar avges från besökare, tända ljus, rökelse, o.d. Tillfällig vädring kan minska detta problem, men även användas för att justera innetemperaturen. Föreliggande studie analyserar mekanismer och predikteringsmodeller gällande luftinfiltration och dörrvädring genom fältmätningar, vindtunnelförsök och datorsimuleringar.

Luftinfiltration och vädring har samma drivkrafter, d.v.s. vind och termik (inne‑ute temperaturskillnader). Båda dessa drivkrafter är svåra att predicera, särskilt vindinducerade flöden och kombinationen av termik och vind. Två av de mest etablerade modellerna för luftinfiltrationsprediktering i byggnader har utvärderats via mätningar i tre kulturhistoriska stenkyrkor i Sverige. En korrigeringsfaktor av 0,8 föreslås för bättre prediktion av den ena modellen (som gav bäst resultat) gällande höga en-zonsbyggnader såsom kyrkor. En detaljerad numerisk modell är utvecklad för luftinfiltrationsprediktering, där indata baseras på fältundersökningar, inkl. IR-termografering och uppmätt av neutrala tryckplanet (NPL). Modellens funktionalitet har validerats via mätningar i en av fallstudierna och pekar på tämligen god prediktionsprestanda. Vidare utveckling av modellen föreslås, inkl. ett mer systematiskt kalibreringssystem, för olika typer av byggnader och väderförhållanden.

Gällande vädring mättes både ensidigt flöde och tvärdrag genom portar i olika kyrkobyggnader med hjälp av spårgas samt direkta lufthastighetsmätningar i portöppning. Mätresultaten jämfördes med erhållna prediktioner från fyra tidigare utvecklade modeller för ensidig ventilation. De modeller som tog hänsyn till vindturbulens gav något bättre resultat. Enligt utförda mätningar medför en timmes ensidig portvädring i en kyrka cirka 50 % luftutbyte, vilket indikerar att detta är en tillämpbar ventilationsmetod, även för så pass stora byggnadsvolymer. Ett särskilt vädringsdiagram presenteras, som syftar till att underlätta uppskattning av erforderlig vädringsperiod.

Vidare studerades predikteringsprestanda hos IDA Indoor Climate and Energy (IDA-ICE) simuleringsprogram avseende vädring, där simuleringsdata jämfördes med fältmätningar i en kyrka. Programmets prediktion av ensidigt luftflöde genom en öppen kyrkport var av samma storlekordning som det uppmäta; dock klarade programmet inte av att hantera inverkan av vindriktning så väl, vilket pekar på en utvecklingspotential.

Avslutningsvis undersöktes vinddrivet flöde igenom portöppningar i en kyrkmodell i vindtunnel, där luftomsättningen mättes med hjälp av spårgasmetoden. Vid ensidig vädring observerades högre flöde vid högre vindturbulens och när öppningen var på vindsidan av byggnaden, i överensstämmelse med fältmätningarna. Dessutom var vädringsflödet vid tvärdrag i storleksordningen 15 högre än det vid ensidig vädring. Det verkar alltså som att man kan öka vädringstakten avsevärt om man kan åstadkomma tvärdrag. Kalibreringskonstanter presenteras också för en enkel ekvation för vinddrivet flöde genom portar. Vindtunnelstudien indikerar vidare att advektion genom turbulens är en viktigare vädringsmekanism än pumpning.

Föreliggande arbete bidrar med kunskap speciellt kring luftinfiltration och vädring genom portar i höga en-zonsbyggnader. Resultaten kan även vara tillämpliga på andra typer av höga en-zonsbyggnader såsom industrihallar, atrier/ljusgårdar och idrottshallar.

Place, publisher, year, edition, pages
Gävle: Gävle University Press, 2017
Series
Studies in the Research Profile Built Environment. Doctoral thesis ; 4
Keywords
Natural ventilation, Airing, Air infiltration, Single-sided ventilation, Cross flow, Large single zones, Historical Churches, Model evaluation/optimization, Field measurements, Wind tunnel, Indoor climate and Energy simulation, IDA-ICE, Tracer gas technique, Pressurization test., Naturlig ventilation, Vädring, Luftinfiltration, Ensidig ventilation, Tvärdrag, Höga en-zonsbyggnader, Kulturhistoriska kyrkor, Modellutvärdering/optimering, Fältmätningar, Vindtunnel, Inomhusklimat och energisimulering, IDA-ICE, Spårgas teknik, Trycksättningstest.
National Category
Building Technologies
Research subject
Sustainable Urban Development
Identifiers
urn:nbn:se:hig:diva-24612 (URN)978-91-88145-17-8 (ISBN)978-91-88145-18-5 (ISBN)
Public defence
2017-09-29, Lilla Jadwigasalen (12:108), Kungsbäcksvägen 47, Gävle, 10:00 (English)
Opponent
Supervisors
Projects
Church project
Funder
Swedish Energy Agency, 2011-002440
Available from: 2017-08-28 Created: 2017-06-29 Last updated: 2021-02-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sandberg, MatsMattsson, MagnusWigö, HansHayati, AbolfazlClaesson, LeifLinden, ElisabetKhan, Mubashar

Search in DiVA

By author/editor
Sandberg, MatsMattsson, MagnusWigö, HansHayati, AbolfazlClaesson, LeifLinden, ElisabetKhan, Mubashar
By organisation
Energy systemBMG laboratory
In the same journal
Building and Environment
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 935 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf