hig.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of task proportion errors on the effectiveness of task-based job exposure modeling
University of Gävle, Faculty of Health and Occupational Studies, Department of Occupational and Public Health Sciences. University of Gävle, Centre for Musculoskeletal Research.ORCID iD: 0000-0003-1443-6211
Centre for Research and Development, Uppsala University / Region Gävleborg, Gävle, Sweden.
2016 (English)Conference paper, Abstract (Refereed)
Abstract [en]

Background.Job-based exposure estimation using the occupational mean (JBM) is associated with substantial error. Many studies have therefore estimated job exposures from workers’ tasks, i.e. task-based modeling (TBM), typically by combining individual workers’ task proportions (TP) in the job with a general task exposure matrix. Studies of postures and muscle activity have, however, shown that TBM may be ineffective; one possible reason being that TPs are not correct. The present simulation study investigated the influence of random and systematic TP error on TBM performance.

Methods.We constructed two virtual two-task jobs with task exposure contrasts of 0.2 and 0.8. In both, TPs and task exposures mimicked likely occupational scenarios. We then simulated four cases of TP error: no error, random error, bias, and bias and random error. For each case, we varied the TP error size, and compared the absolute errors of TBM- and JBM-based job exposures for 10,000 virtual workers.

Results.For the low-contrast job, TBM with error-free TPs was, on average, only 6% more efficient than JBM, and the probability of TBM leading to a more correct job exposure than JBM was 56%. TP errors had negligible effects on effectiveness. With error-free TPs in the high-contrast job, TPM was 75% more efficient than JBM, and led to more correct job exposures for 71% of all workers. TP errors decreased TBM performance, down to being 34% better than JBM when both random and systematic errors were “large”; 62% of all individuals being more correctly assessed by TBM.

Discussion.For jobs with limited task exposure contrast, TBM was essentially equivalent to JBM, while TP errors had marginal impact. In high-contrast jobs, TBM was more effec-tive, but was also more sensitive to both random and systematic TP errors. This may feed further discussion of the cost-efficiency of TBM in occupational settings.

Place, publisher, year, edition, pages
2016.
Keyword [en]
task-based job, job-based exposure, task-based modelling, TBM performance
National Category
Environmental Health and Occupational Health
Identifiers
URN: urn:nbn:se:hig:diva-21896OAI: oai:DiVA.org:hig-21896DiVA: diva2:942390
Conference
Ninth International Conference on the Prevention of Work-Related Musculoskeletal Disorders (PREMUS), June 20-23, 2016, Toronto,Canada
Available from: 2016-06-23 Created: 2016-06-23 Last updated: 2017-02-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Proceedings

Search in DiVA

By author/editor
Mathiassen, Svend ErikLiv, Per
By organisation
Department of Occupational and Public Health SciencesCentre for Musculoskeletal Research
Environmental Health and Occupational Health

Search outside of DiVA

GoogleGoogle Scholar

Total: 175 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf