hig.sePublikasjoner
Endre søk
Begrens søket
1 - 19 of 19
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Airey, John
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Eriksson, Urban
    Uppsala universitet, Fysikundervisningens didaktik.
    Fredlund, Tobias
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    On the Disciplinary Affordances of Semiotic Resources2014Inngår i: IACS-2014 Book of abstracts, 2014, s. 54-55Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In the late 70’s Gibson (1979) introduced the concept of affordance. Initially framed around the needs of an organism in its environment, over the years the term has been appropriated and debated at length by a number of researchers in various fields. Most famous, perhaps is the disagreement between Gibson and Norman (1988) about whether affordances are inherent properties of objects or are only present when they are perceived by an organism. More recently, affordance has been drawn on in the educational arena, particularly with respect to multimodality (see Linder (2013) for a recent example). Here, Kress et al. (2001) have claimed that different modes have different specialized affordances. Then, building on this idea, Airey and Linder (2009) suggested that there is a critical constellation of modes that students need to achieve fluency in before they can experience a concept in an appropriate disciplinary manner. Later, Airey (2009) nuanced this claim, shifting the focus from the modes themselves to a critical constellation of semiotic resources, thus acknowledging that different semiotic resources within a mode often have different affordances (e.g. two or more diagrams may form the critical constellation).

    In this theoretical paper the concept of disciplinary affordance (Fredlund et al., 2012) is suggested as a useful analytical tool for use in education. The concept makes a radical break with the views of both Gibson and Norman in that rather than focusing on the discernment of one individual, it refers to the disciplinary community as a whole. Put simply, the disciplinary affordances of a given semiotic resource are determined by those functions that the resource is expected to fulfil by the disciplinary community. Disciplinary affordances have thus been negotiated and developed within the discipline over time. As such, the question of whether these affordances are inherent or discerned becomes moot. Rather, from an educational perspective the issue is whether the meaning that a semiotic resource affords to an individual matches the disciplinary affordance assigned by the community. The power of the term for educational work is that learning can now be framed as coming to discern the disciplinary affordances of semiotic resources.

    In this paper we will briefly discuss the history of the term affordance, define the term disciplinary affordance and illustrate its usefulness in a number of educational settings.

  • 2.
    Fredlund, Tobias
    Uppsala universitet, Fysikundervisningens didaktik.
    Exploring physics education using a social semiotic perspective: the critical role of semiotic resources2013Licentiatavhandling, med artikler (Annet vitenskapelig)
  • 3.
    Fredlund, Tobias
    Uppsala universitet, Fysikundervisningens didaktik.
    Exploring Representations in Physics Teaching and Learning2010Konferansepaper (Fagfellevurdert)
  • 4.
    Fredlund, Tobias
    Uppsala universitet, Fysikundervisningens didaktik.
    Learning science and the selection of apt signifiers: an example from physics2013Konferansepaper (Fagfellevurdert)
  • 5.
    Fredlund, Tobias
    Uppsala universitet, Fysikundervisningens didaktik.
    Multimodality in Students Physics Discussions2010Konferansepaper (Fagfellevurdert)
  • 6.
    Fredlund, Tobias
    Uppsala universitet, Fysikundervisningens didaktik.
    Using a Social Semiotic Perspective to Inform the Teaching and Learning of Physics2015Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    This thesis examines meaning-making in three different areas of undergraduate physics: the refraction of light; electric circuits; and, electric potential and electric potential energy. In order to do this, a social semiotic perspective was constituted for the thesis to facilitate the analysis of meaning-making in terms of the semiotic resources that are typically used in the teaching and learning of physics. These semiotic resources include, for example, spoken and written language, diagrams, graphs, mathematical equations, gestures, simulations, laboratory equipment and working practices.

    The empirical context of the thesis is introductory undergraduate physics where interactive engagement was part of the educational setting. This setting presents a rich data source, which is made up of video- and audio recordings and field notes for examining how semiotic resources affect physics teaching and learning.

    Theory building is an integral part of the analysis in the thesis, which led to the constitution of a new analytical tool – patterns of disciplinary-relevant aspects. Part of this process then resulted in the development of a new construct, disciplinary affordance, which for a discipline such as physics, refers to the inherent potential of a semiotic resource to provide access to disciplinary knowledge. These two aspects, in turn, led to an exploration of new empirical and theoretical links to the Variation Theory of Learning.

    The implications of this work for the teaching and learning of physics means that new focus is brought to the physics content (object of learning), the semiotic resources that are used to deal with that content, and how the semiotic resources are used to create patterns of variation within and across the disciplinary-relevant aspects. As such, the thesis provides physics teachers with new and powerful ways to analyze the semiotic resources that get used in efforts to optimize the teaching and learning of physics. 

  • 7.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Airey, John
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    Att välja lämpliga semiotiska resurser2013Inngår i: Scientific literacy: teori och praktik / [ed] E. Lundqvist, R. Säljö & L. Östman, Malmö: Gleerups Utbildning AB, 2013, s. 59-70Kapittel i bok, del av antologi (Fagfellevurdert)
  • 8.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Airey, John
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    University of the Western Cape, Cape Town, South Africa.
    Choosing appropriate resources: investigating students’ scientific literacy2012Inngår i: ECER 2012, 2012, artikkel-id 18275Konferansepaper (Fagfellevurdert)
  • 9.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Airey, John
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    Critical aspects of scientific phenomena -- to the fore, in the background, or not present in scientific representations2012Konferansepaper (Fagfellevurdert)
  • 10.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Airey, John
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    Enhancing the possibilities for learning: Variation of disciplinary-relevant aspects in physics representations2015Inngår i: European journal of physics, ISSN 0143-0807, E-ISSN 1361-6404, Vol. 36, nr 5, artikkel-id 055001Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this theoretical article we propose three factors that can enhance the possibilities for learning physics from representations, namely: (1) the identification of disciplinary-relevant aspects for a particular disciplinary task, such as solving a physics problem or explaining a phenomenon, (2) the selection of appropriate representations that showcase these disciplinary-relevant aspects, and (3) the creation of variation within the selected representations to help students notice these disciplinary-relevant aspects and the ways in which they are related to each other. An illustration of how these three factors can guide teachers in their efforts to promote physics learning is presented.

  • 11.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    Making physics learning possible: exploring a variation perspective on representations2013Konferansepaper (Fagfellevurdert)
  • 12.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    Naturvetarnas ‘språk’: användandet av figurer, artefakter, ekvationer och ord i studentdiskussioner om fysikaliska fenomen2010Konferansepaper (Annet vitenskapelig)
    Abstract [sv]

    Klyftan mellan vardagsspråket och språkbruket i en naturvetenskaplig disciplin, som t.ex. fysik, kan upplevas problematisk av den som inte har tillägnat sig det aktuella vetenskapliga språket. Detta blir extra tydligt om vi utökar definitionen av ”språk” till att också innefatta andra semiotiska resurser än talad och skriven text, som t.ex figurer, grafer, ekvationer och andra ”artefakter” såsom laboratorieutrustning. Olika semiotiska resurser kan antas ha olika styrkor, och lämna kompletterande information. Från ett lärandeperspektiv är det viktigt att veta hur den nämnda språkklyftan kan överbryggas, särskilt när nya fenomen ska introduceras i undervisningen. Finns det för ett visst fenomen någon semiotisk resurs (läs språngbräda) som är särskilt viktig för förståelsen av de vetenskapliga förklaringarna?

    Refraktion är ett fysikaliskt fenomen som innebär att exempelvis ljus ändrar riktning, bryts, när det går från ett medium till ett annat, i vilka ljushastigheterna är olika. Denna riktningsändring ger upphov till att en rak pinne som är delvis i luften och delvis nedsänkt i vatten, ser ut att böjas vid vattenytan. Detta fenomen kan beskrivas av en rad olika semiotiska resurser, som olika typer av diagram och ekvationer. I denna undersökning har jag tittat på vilka semiotiska resurser som används när tre fysikstudenter diskuterar hur de skulle förklara upplevelsen att en pinne delvis nedsänkt i vatten ser ut att böjas vid vattenytan för dels en icke fysik-studerande, dels en kurskamrat i en fysikkurs. Diskussionen har videofilmats och transkriberats. Ytterligare material har insamlats från liknande gruppdiskussioner, där deltagarna fått anteckna sina resultat på papper. Data har analyserats efter vilka semiotiska resurser som förekommer, och vilken betydelse de haft för diskussionen.

    Resultatet av undersökningen kommer att presenteras i form av en poster, där bilder på de använda semiotiska resurserna visas. Den pågående analysen antyder att en viss typ av diagram, som utnyttjar ljusets vågnatur, är av särskild vikt för förståelsen av detta fenomen, och en möjlig nyckel till djupare förståelse av fenomenet.

  • 13.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    Airey, John
    Uppsala universitet, Fysikundervisningens didaktik.
    A case study of the role of representations in enabling and constraining the sharing of physics knowledge in peer discussions2012Konferansepaper (Fagfellevurdert)
  • 14.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    Airey, John
    Uppsala universitet, Fysikundervisningens didaktik.
    A social semiotic approach to identifying critical aspects2015Inngår i: International Journal for Lesson and Learning Studies, ISSN 2046-8253, E-ISSN 2046-8261, Vol. 4, nr 3, s. 302-316Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Purpose

    This article proposes a social semiotic approach to analysing objects of learning in terms of their critical aspects.

    Design/methodology/approach

    The design for this article focuses on how the semiotic resources – including language, equations, and diagrams – that are commonly used in physics teaching realise the critical aspects of a common physics object of learning. A social semiotic approach to the analysis of a canonical text extract from optics is presented to illustrate how critical aspects can be identified. 

    Findings

    Implications for university teaching and learning of physics stemming from this social semiotic approach are suggested.

    Originality/value

    Hitherto under-explored similarities between the Variation Theory of Learning, which underpins learning studies, and a social semiotic approach to meaning-making are identified. These similarities are used to propose a new, potentially very powerful approach to identifying critical aspects of objects of learning.

    References:

    Airey, J. and Linder, C. (2009), “A disciplinary discourse perspective on university science learning: achieving fluency in a critical constellation of modes”, Journal of Research in Science Teaching, Vol. 46 No. 1, pp. 27-49.

    Bernhard, J. (2010), “Insightful learning in the laboratory: some experiences from 10 years of designing and using conceptual labs”, European Journal of Engineering Education, Vol. 35 No. 3, pp. 271-287.

    Booth, S. (1997), “On phenomenography, learning and teaching”, Higher Education Research & Development, Vol. 16 No. 2, pp. 135-158. 

    Booth, S. and Hultén, M. (2003), “Opening dimensions of variation: an empirical study of learning in a web-based discussion”, Instructional Science, Vol. 31 Nos 1/2, 65-86.

    Chandler, D. (2007), Semiotics: The Basics, Routledge, New York, NY. Clerk-Maxwell, J.C. (1871), “Remarks on the mathematical classification of physical quantities”, Proceedings London Math. Soc., London, pp. 224-233.

    Cope, C. (2000), “Educationally critical aspects of the experience of learning about the concept of an information system”, PhD thesis, La Trobe University, Bundoora.

    Einstein, A. (1936), “Physics and reality”, Journal of the Franklin Institute, Vol. 221 No. 3, pp. 349-382.

    Feynman, R.P., Leighton, R.P. and Sands, M. (1963), The Feynman Lectures on Physics, Vol. I, Perseus Books, Reading, available at: www.feynmanlectures.caltech.edu, (accessed 9 March 2015).

    Fredlund, T., Airey, J. and Linder, C. (2012), “Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction”, Eur. J. Phys., Vol. 33 No. 3, pp. 657-666.

    Fredlund, T., Airey, J. and Linder, C. (2015), “Enhancing the possibilities for learning: variation of disciplinary-relevant aspects in physics representations”, Eur. J. Phys, Vol. 36, 055001.

    Fredlund, T., Linder, C., Airey, J. and Linder, A. (2014), “Unpacking physics representations: towards an appreciation of disciplinary affordance”, Phys. Rev. ST Phys. Educ. Res., Vol. 10, 020129.

    Gurwitsch, A. (1964), The Field of Consciousness, Vol. 2, Duquesne University Press, Pittsburgh, PA. Halliday, M.A.K. (1978), Language as Social Semiotic, Edward Arnold, London.

    Halliday, M.A.K. (1993), “On the language of physical science”, in Halliday, M.A.K. and Martin, J.R. (Eds), Writing Science: Literacy and Discursive Power, The Falmer Press, London, pp. 59-75.

    Halliday, M.A.K. (1998), “Things and relations: regrammaticising experience as technical knowledge”, in Martin, J.R. and Veel, R. (Eds), Reading Science: Critical and Functional Perspectives on Discourses of Science, Routledge, London, pp. 185-236.

    Halliday, M.A.K. (2004a), “The grammatical construction of scientific knowledge: the framing of the English clause”, in Webster, J.J. (Ed.), Collected Works of M.A.K. Halliday: The Language of Science, Vol. 5, Continuum, London, pp. 102-134.

    Halliday, M.A.K. (2004b), “Language and the reshaping of human experience”, in Webster, J.J. (Ed.), Collected Works of M.A.K. Halliday: The Language of Science, Vol. 5, Continuum, London, pp. 7-23.

    Halliday, M.A.K. and Matthiessen, C.M.I.M. (1999), Construing Experience Through Meaning, Cassell, New York, NY.

    Halliday, M.A.K. and Matthiessen, C.M.I.M. (2004), An Introduction to Functional Grammar, Hodder Education, London.

    Hodge, R. and Kress, G. (1988), Social Semiotics, Cornell University Press, New York, NY.

    Ingerman, Å., Linder, C. and Marshall, D. (2009), “The learners’ experience of variation: following students’ threads of learning physics in computer simulation sessions”, Instructional Science, Vol. 37 No. 3, pp. 273-292.

    Kress, G. (1997), Before Writing: Rethinking the Paths to Literacy, Routledge, London.

    Kress, G. (2010), Multimodality: A Social Semiotic Approach to Contemporary Communication, Routledge, London.

    Kress, G. and Van Leeuwen, T. (2006), Reading Images: The Grammar of Visual Design, Routledge, New York, NY. 

    Kryjevskaia, M., Stetzer, M.R. and Heron, P.R.L. (2012), “Student understanding of wave behavior at a boundary: the relationships among wavelength, propagation speed, and frequency”, Am. J. Phys., Vol. 80 No. 4, pp. 339-347.

    Lemke, J.L. (1983), “Thematic analysis, systems, structures, and strategies”, Semiotic Inquiry, Vol. 3 No. 2, pp. 159-187.

    Lemke, J.L. (1990), Talking Science, Ablex Publishing, Norwood, NJ. Lemke, J.L. (1998), “Multiplying meaning: visual and verbal semiotics in scientific text”, in Martin, J.R. and Veel, R. (Eds), Reading Science: Critical and Functional Perspectives on Discourses of Science, Routledge, London, pp. 87-114.

    Lemke, J.L. (2003), “Mathematics in the middle: measure, picture, gesture, sign and word”, in Anderson M., Saenz-Ludlow A., Zellweger S. and Cifarelli V. (Eds), Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing, Legas, Ottawa, pp. 215-234.

    Linder, C., Fraser, D. and Pang, M.F. (2006), “Using a variation approach to enhance physics learning in a college classroom”, The Physics Teacher, Vol. 44 No. 9, pp. 589-592.

    Lo, M.L. (2012), Variation Theory and the Improvement of Teaching and Learning, Göteborgs Universitet, Gothenburg.

    Lo, M.L. and Marton, F. (2011), “Towards a science of the art of teaching: using variation theory as a guiding principle of pedagogical design”, International Journal for Lesson and Learning Studies, Vol. 1 No. 1, pp. 7-22.

    Mahoney, M.S. (1994), The Mathematical Career of Pierre de Fermat, 1601-1665, Princeton University Press, Princeton, MA.

    Marton, F. (2006), “Sameness and difference in transfer”, The Journal of the Learning Sciences, Vol. 15 No. 4, pp. 499-535.

    Marton, F. (2015), Necessary Conditions of Learning, Routledge, New York, NY.

    Marton, F. and Booth, S. (1997), Learning and Awareness, Lawrence Erlbaum Associates, Mahwah, NJ.

    Marton, F. and Pang, M.F. (2013), “Meanings are acquired from experiencing differences against a background of sameness, rather than from experiencing sameness against a background of difference: putting a conjecture to the test by embedding it in a pedagogical tool”, Frontline Learning Research, Vol. 1 No. 1, pp. 24-41.

    Marton, F. and Tsui, A.B.M. (2004), Classroom Discourse and the Space of Learning, Lawrence Erlbaum Associates, London.

    Marton, F., Runesson, U. and Tsui, A.B.M. (2004), “The space of learning”, in Marton, F. and Tsui, A.B.M. (Eds), Classroom Discourse and the Space of Learning, Lawrence Erlbaum Associates, London, pp. 3-40.

    New London Group (1996), “A pedagogy of multiliteracies: designing social futures”, Harvard Educational Review, Vol. 66 No. 1, pp. 60-93. Norris, S.P. and Phillips, L.M. (2003), “How literacy in its fundamental sense is central to scientific literacy”, Science Education, Vol. 87 No. 2, pp. 224-240.

    O’Halloran, K.L. (2005), Mathematical Discourse: Language, Symbolism and Visual Images, Continuum, London.

    Pang, M.F. and Marton, F. (2013), “Interaction between the learners’ initial grasp of the object of learning and the learning resource orded”, Instructional Science, Vol. 41 No. 6, pp. 1065-1082.

    Van Leeuwen, T. (2005), Introducing Social Semiotics, Routledge, New York, NY.

    Warrell, D. A. (1994), “Sea snake bites in the Asia-Pacific region”, in Gopalakrishnakone, P. (Ed.), Sea Snake Toxinology, Singapore University Press, Singapore, pp. 1-36. 

    Wignell, P., Martin, J.R. and Eggins, S. (1993), “The discourse of geography: ordering and explaining the experiential world”, in Halliday, M.A.K. and Martin, J.R. (Eds), Writing Science: Literacy and Discursive Power, The Falmer Press, London, pp. 151-183.

    Wood, K. (2013), “A design for teacher education based on a systematic framework of variation to link teaching with learners’ ways of experiencing the object of learning”, International Journal for Lesson and Learning Studies, Vol. 2 No. 1, pp. 56-71.

    Young, H.D. and Freedman, R.A. (2004), University Physics with Modern Physics, Pearson, San Francisco, CA.

  • 15.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    Airey, John
    Uppsala universitet, Fysikundervisningens didaktik.
    Learning in terms of the semiotic enactment of patterns of disciplinary-relevant aspects2014Inngår i: IACS-2014 Book of abstracts, 2014, s. 94-94Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Student learning typically takes place in a range of situational contexts. In this paper we consider “sets of situations that have certain relevant aspects in common” (Marton, 2006, p. 503) where each aspect involved is qualitatively unique. We argue that in order for students to come to holistically experience the relevant disciplinary knowledge, they need to become familiar with enacting those relevant aspects (i.e. expressing them with semiotic resources, such as spoken and written language, equations and images.).

    We suggest it is possible to construct idealized patterns of the aspects that a discipline deems to be relevant for a given field of knowledge – thus characterizing its typical situations and phenomena. We call such a pattern an “idealized pattern of disciplinary relevant aspects” (IPDRA). Each of the aspects that together constitute an IPDRA can be seen to be manifested in discourse in terms of particular configurations, partly prescribed by the “rules” governing the semiotic resource at hand (such as grammar for language). The discursive configurational patterns (cf. Lemke's, 1990, "thematic patterns"; and Tang et al.'s, 2011, "multimodal thematic patterns") that can be empirically found in student discourse can then be compared with the IPDRA to see whether the required aspects have been enacted.

    The semiotic resources that are used in a scientific discipline are often highly specialized. Any given semiotic resource may therefore be more appropriate for expressing certain (combinations of) situational aspects (what we have called its “disciplinary affordances”, see Fredlund, Airey, & Linder, 2012). We argue it is the disciplinary affordances that determine which semiotic resources that can do which work in terms of representing the knowledge captured by an IPDRA. A pedagogical implication of this is that students need to become fluent in, and learn to choose, those semiotic resources that have the most appropriate disciplinary affordances for enacting a given IPDRA.

    In this paper we demonstrate how different semiotic resources have different disciplinary affordances and thus how changing the semiotic resource can lead to the possibility to enact different aspects of disciplinary knowledge. 

    References

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction. Eur. J. Phys., 33, 657-666. doi: 10.1088/0143-0807/33/3/657

    Lemke, J. L. (1990). Talking Science. Norwood, New Jersey: Ablex Publishing.

    Marton, F. (2006). Sameness and difference in transfer. The Journal of the Learning Sciences, 15(4), 499-535. 

    Tang, K. S., Tan, S. C., & Yeo, J. (2011). Students' multimodal construction of the work-energy concept. International Journal of Science Education, 33(13), 1775-1804. 

  • 16.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    Airey, John
    Uppsala universitet, Fysikundervisningens didaktik.
    Towards addressing transient learning challenges in undergraduate physics: An example from electrostatics2015Inngår i: European journal of physics, ISSN 0143-0807, E-ISSN 1361-6404, Vol. 36, nr 5, artikkel-id 055002Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this article we characterize transient learning challenges as learning challenges that arise out of teaching situations rather than conflicts with prior knowledge. We propose that these learning challenges can be identified by paying careful attention to the representations that students produce. Once a transient learning challenge has been identified, teachers can create interventions to address it. By illustration, we argue that an appropriate way to design such interventions is to create variation around the disciplinary-relevant aspects associated with the transient learning challenge.

  • 17.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    Airey, John
    Uppsala universitet, Fysikundervisningens didaktik.
    Variation as a method for perceiving the disciplinary affordances of physics representations2014Inngår i: IACS-2014 Book of Abstracts, 2014, s. 32-33Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The sharing of knowledge in physics uses representations that the discipline has built a great deal of information into. In many cases, much of this information is not immediately visible because it has been “packed” in ways that can only be accessed by specific disciplinary ways of seeing. For example, consider the de Sitter space represented by a particular hyperboloid.

    This is a powerful representation for physicists working in the field of string theory because, inter alia, it can provide de Sitter space with a multiplicity of coordinate systems (Domert, 2006, p. 30). At the same time such a representation can present challenges to student learning; students would have to learn to “see” what “lies behind” the representation. In this case, for example, how R is related to the concept of a de Sitter horizon.

    While for physicists such a representation might evoke a rich awareness (or perhaps rather help constraining that awareness, cf. Ainsworth, 2006), it conceivably evokes little appropriate disciplinary meaning when first met by students. Northedge (2002) argues that physics teachers may not be aware that what they have learnt to “see” is not directly accessible to learners. That is, while physicists have developed a competency that allows them to immediately see the “disciplinary affordances” of a representation (“the inherent potential of that representation to provide access to disciplinary knowledge”, Fredlund, Airey, & Linder, 2012, p. 658) they fail to recognize that their students may not, or even cannot, see what lies behind that representation.

    Much research has shown that students often learn surprisingly little from traditional teaching resources such as talk-and-chalk followed by problem solving (Redish, 2003). To deal with this challenge several research-informed resources have been developed and empirically shown to enhance students’ learning outcomes. Widely used examples include Tutorials (McDermott & Shaffer, 2002), Active Learning (Van Heuvelen & Etkina, 2006) and Peer Instruction (Crouch & Mazur, 2001). However, these resources have not been accompanied with a theoretical framing that would enable physics teachers to develop their own teaching resources. We believe that such a theoretical framing exists: creating the explicit experience of dimensions of variation (Marton & Booth, 1997). 

    In this presentation we develop this argument and illustrate it using examples of how representations can be varied in ways that facilitate the noticing of educationally critical aspects.

    References

    Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.

    Crouch, C. H., & Mazur, E. (2001). Peer Instruction: Ten years of experience and results. Am. J. Phys., 69(9), 970-977.

    Domert, D. (2006). Explorations of university physics in abstract contexts: from de Sitter space to learning space. PhD thesis, Uppsala University, Uppsala.

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction. Eur. J. Phys., 33, 657- 666.

    Marton, F., & Booth, S. (1997). Learning and Awareness. Mahwah, New Jersey: Lawrence Erlbaum Associates. 

  • 18.
    Fredlund, Tobias
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    Airey, John
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Anne
    Uppsala universitet, Fysikundervisningens didaktik.
    Unpacking physics representations: Towards an appreciation of disciplinary affordance2014Inngår i: Physical Review Special Topics : Physics Education Research, ISSN 1554-9178, E-ISSN 1554-9178, Vol. 10, nr 2, artikkel-id 020129Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This theoretical article problematizes the access to disciplinary knowledge that different physics representations have the possibility to provide; that is, their disciplinary affordances. It is argued that historically such access has become increasingly constrained for students as physics representations have been rationalized over time. Thus, the case is made that such rationalized representations, while powerful for communication from a disciplinary point of view, manifest as learning challenges for students. The proposal is illustrated using a vignette from a student discussion in the physics laboratory about circuit connections for an experimental investigation of the charging and discharging of a capacitor. It is concluded that in order for students to come to appreciate the disciplinary affordances of representations, more attention needs to be paid to their “unpacking.” Building on this conclusion, two questions are proposed that teachers can ask themselves in order to begin to unpack the representations that they use in their teaching. The paper ends by proposing directions for future research in this area.

  • 19.
    Shestopalov, Yury
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för elektronik, matematik och naturvetenskap, Matematik.
    Kuzmina, Ekaterina
    Moscow Technical University MIREA, Moscow, Russia.
    Symmetric surface waves along a metamaterial dielectric waveguide and a perfectly conducting cylinder covered by a metamaterial layer2018Inngår i: Advanced Electromagnetics (AEM), E-ISSN 2119-0275, Vol. 7, nr 2, s. 91-98Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Existence of symmetric complex waves in a metamaterial dielectric rod and a perfectly conducting cylinder of circular cross section covered by a concentric layer of metamaterial, a metamaterial Goubau line, is proved. Analytical investigation and numerical solution of dispersion equations reveal several important properties of running waves inher- ent to open metal-metamaterial waveguides which have not been reported for waveguides filled with standard media.

1 - 19 of 19
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf