hig.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hurlov, Almedina
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science.
    Värmeåtervinning med spillvatten i flerbostadshus2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
  • 2.
    Kordi, Maryam
    et al.
    National University of Ireland, National Centre for Geocomputation.
    Brandt, Anders
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Industrial Development, IT and Land Management, Urban and regional planning/GIS-institute.
    Effects of increasing fuzziness on analytic hierarchy process for spatial multicriteria decision analysis2012In: Computers, Environment and Urban Systems, ISSN 0198-9715, E-ISSN 1873-7587, Vol. 36, no 1, p. 43-53Article in journal (Refereed)
    Abstract [en]

    Multicriteria decision analysis (MCDA) involves techniques which relatively recently have received great increase in interest for their capabilities of solving spatial decision problems. One of the most frequently used techniques of MCDA is Analytic Hierarchy Process (AHP). In the AHP, decision-makers make pairwise comparisons between different criteria to obtain values of their relative importance. The AHP initially only dealt with crisp numbers or exact values in the pairwise comparisons, but later it has been modified and adapted to also consider fuzzy values. It is necessary to empirically validate the ability of the fuzzified AHP for solving spatial problems. Further, the effects of different levels of fuzzification on the method have to be studied. In the context of a hypothetical GIS-based decision-making problem of locating a dam in Costa Rica using real-world data, this paper illustrates and compares the effects of increasing levels of uncertainty exemplified through different levels of fuzzification of the AHP. Practical comparison of the methods in this work, in accordance with the theoretical research, revealed that by increasing the level of uncertainty or fuzziness in the fuzzy AHP, differences between results of the conventional and fuzzy AHPs become more significant. These differences in the results of the methods may affect the final decisions in decision-making processes. This study concludes that the AHP is sensitive to the level of fuzzification and decision-makers should be aware of this sensitivity while using the fuzzy AHP. Furthermore, the methodology described may serve as a guideline on how to perform a sensitivity analysis in spatial MCDA. Depending on the character of criteria weights, i.e. the degree of fuzzification, and its impact on the results of a selected decision rule (e.g. AHP), the results from a fuzzy analysis may be used to produce sensitivity estimates for crisp AHP MCDA methods.

  • 3.
    Myhr, Hampus
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Energiförluster i vattenkraftstunnlar och älvsträckor: Hur påverkas Manningtalet när skrovlighetens geometri är stor i förhållande till tvärsektionens geometri?2018Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    When water travels along a channel is the bottom which the water is in direct contact with, defined by a coefficient named

    Manning’s coefficient of friction. This coefficient explains the roughness of the channel bed. A rough surface equals a low Manning’s coefficient. The purpose of this thesis is to study how Manning’s coefficient differs when different waterflows and depths is obtained. The Manning equation is depend-ent on using a constant Manning’s coefficient based on experience and tables. The experience in the line of business knows that the coefficient holds a different value in channels with similar bathymetry and different flow conditions, and the thesis will cover these questions.

    At Vattenfall Research & Development in Älvkarleby, a flume made for fluid me-chanic experiments has been built, which is perfectly suitable for the experiments for this thesis. The flume has a roughness that has been programmed mathematically with a purpose of looking like a real channel bed or a blasted rock-tunnel. This is where all the measurements were made.

    The measurements were made in totally 14 cross-sections with a few different flows and depths. The depth was controlled by a hatchway downstream the flume and the flow were controlled by the pumps. Depending on which setting the hatchway ob-tained measurements between 1.6 l/s to 280 l/s were made. The different settings that were used for the hatch was 100 %, 85 %, 75 %, 60 % and 30 % open hatch. The most obvious results appeared when the hatch was 100 % open, since the differ-ence in depth between each cross-section was large and the faults in the equipment

    weren’t that important. 30 % open hatch generated such calm flow and a deep depth, so the errors were too big to include in the report. These different flow conditions were used to gain a big variation and accuracy, with the purpose of getting as good result as possible.

    The measurements show that for every hatch-setting, the Manning coefficient gets lower when a lower depth and flow are held. If the results are plotted from all the hatch-settings, especially 100 % open in a graph with the Manning coefficient as a function of the flow, the results follow an obvious shape with a trend where the Man-ning coefficient reduces with lower flows. The same thing with the depth. Shallower depth equals lower Manning coefficient. This is because of the roughness elements that has a bigger part of the entire cross-sectional area, so that a bigger part of the cross-sectional area is affected by phenomenon caused by the roughness elements.

    Key words: Manning’s coefficient,

    streaming losses, energy losses, Vattenfall

  • 4.
    Wallberg, Ellinor
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science.
    Nyberg, Erik
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building Engineering, Energy Systems and Sustainability Science, Environmental Science.
    Klimatförändringarnas påverkan pågrundvattnet: En effektstudie över den framtida grundvattensituationen iHedesundaåsen, med fokus på vattenkvantitet2019Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Climate change may affect the hydrological cycle on a global scale. The changes will most clearly be noticed on the surface, with increasing precipitation amounts, in-creased evaporation and a reduced snow cover. What happens at the surface has a great impact on what happens to the groundwater, and varies greatly between the different water storages, the prevailing climate and land use. The European Environ-ment Agency has therefore sought to investigate future groundwater conditions at local levels. The Hedesunda esker was chosen for this study because it is used as a water source without human modification of its inflow. No similar studies have pre-viously been performed on the Hedesunda esker. It is an esker in Gävleborg County, which supplies drinking water to the population in Hedesunda. The purpose of this study has been to present how the groundwater in the Hedesunda esker may be af-fected in a future climate.

    The hydrological model HBV-light was calibrated for the time period 2000-2009 us-ing meteorological measurements from SMHI, and validated against the time period 2011-2017. Simulations were performed for the time periods 2022-2050 and 2072-2100. In the simulations, two widely different future scenarios were used to cover a large range of possible future scenarios. The simulations in the study consistently showed trends with increasing groundwater levels and recharge, regardless of the scenario. Depending on the chosen scenario, the groundwater level according to the simulations may increase by between 6.3–11.5 % and the groundwater recharge by between 4.8–13.6 % for the period 2072-2100. A similar study, previously con-ducted in a nearby area, showed an increase in groundwater recharge by up to 15 % at the end of the century. A comparison of the results between the studies makes it likely that the results from the Hedesunda esker may well be correct.

    It is clear after this study that climate change will affect the groundwater in Hede-sunda in the future. The uncertainties about the details are many, as the future sce-narios are only an estimate of how precipitation, temperature etc. will be affected in a future climate. The uncertainty is based on the fact that these factors are used as a forecast in a hydrological model, which also contains uncertainties from the mathe-matical model and the future scenarios. Despite the many uncertainties, the simula-tions can give an indication of how climate change may affect the groundwater in the future, and can be used to prepare society for possible future consequences of the groundwater's changed quantity and, in the long run, also the water quality.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf