hig.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hugosson, Håkan Wilhelm
    et al.
    Department of Materials Science, KTH, Lindstedsvägen 23,S-100 44 Stockholm,Sweden.
    Cao, Weimin
    Department of Materials Science, KTH, Lindstedsvägen 23,S-100 44 Stockholm,Sweden.
    Seetharaman, Seshadri
    Department of Materials Science, KTH, Lindstedsvägen 23,S-100 44 Stockholm,Sweden.
    Delin, Anna
    Department of Materials Science, KTH, Lindstedsvägen 23,S-100 44 Stockholm,Sweden;SeRC, KTH, SE-100 44, Stockholm, Sweden;Ångstrom Laboratory, Uppsala University, Uppsala, Sweden.
    Sulfur- and Oxygen-Induced Alterations of the Iron (001) Surface Magnetism and Work Function: A Theoretical Study2013In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 12, p. 6161-6171Article in journal (Refereed)
    Abstract [en]

    The electronic structure and magnetic properties of atomic sulfur and oxygen adsorbed on the iron (001) surface are examined using density functional theory (DFT). The sulfur/oxygen coverage is considered from a quarter of one monolayer (ML) to a full monolayer. The work function change, magnetic properties, and density of states are determined and compared. We find that the work function increases with sulfur coverage in agreement with experiment. We also find that sulfur interacts strongly with the surface layer and that the magnetic moment of the Fe surface decreases as the sulfur coverage increases. In the case of oxygen adsorption, we find that the magnetic moment of the surface Fe atoms instead increases. We show that the difference in surface magnetic moment between sulfur adsorption and oxygen adsorption can be simply explained combining the Slater–Pauling rigid band model linking d-occupation and magnetic moment with an electronegativity argument. Moreover, the work function of the Fe surface as a function of oxygen coverage is found to be very sensitive to overlayer arrangement, here seen in the cases of 0.5 ML c(2 × 2) and 0.5 ML p(2 × 1). This is shown to result from large differences in the surface dipole moment change induced by the oxygen adsorption in the two different overlayer arrangements.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf