hig.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aslani, Mohammad
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Datavetenskap.
    Seipel, Stefan
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, Datavetenskap. Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran.
    Mohammad Saadi, Mesgari
    Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden.
    Wiering, Marco A.
    Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen, Groningen, Netherlands.
    Traffic signal optimization through discrete and continuous reinforcement learning with robustness analysis in downtown Tehran2018Ingår i: Advanced Engineering Informatics, ISSN 1474-0346, E-ISSN 1873-5320, Vol. 38, s. 639-655Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Traffic signal control plays a pivotal role in reducing traffic congestion. Traffic signals cannot be adequately controlled with conventional methods due to the high variations and complexity in traffic environments. In recent years, reinforcement learning (RL) has shown great potential for traffic signal control because of its high adaptability, flexibility, and scalability. However, designing RL-embedded traffic signal controllers (RLTSCs) for traffic systems with a high degree of realism is faced with several challenges, among others system disturbances and large state-action spaces are considered in this research.

    The contribution of the present work is founded on three features: (a) evaluating the robustness of different RLTSCs against system disturbances including incidents, jaywalking, and sensor noise, (b) handling a high-dimensional state-action space by both employing different continuous state RL algorithms and reducing the state-action space in order to improve the performance and learning speed of the system, and (c) presenting a detailed empirical study of traffic signals control of downtown Tehran through seven RL algorithms: discrete state Q-learning(λ" role="presentation">), SARSA(λ" role="presentation">), actor-critic(λ" role="presentation">), continuous state Q-learning(λ" role="presentation">), SARSA(λ" role="presentation">), actor-critic(λ" role="presentation">), and residual actor-critic(λ" role="presentation">).

    In this research, first a real-world microscopic traffic simulation of downtown Tehran is carried out, then four experiments are performed in order to find the best RLTSC with convincing robustness and strong performance. The results reveal that the RLTSC based on continuous state actor-critic(λ" role="presentation">) has the best performance. In addition, it is found that the best RLTSC leads to saving average travel time by 22% (at the presence of high system disturbances) when it is compared with an optimized fixed-time controller.

1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf