hig.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ghahremanian, Shahriar
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Department of Management and Engineering, Linköping University.
    Moshfegh, Bahram
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Department of Management and Engineering, Linköping University.
    Evaluation of RANS models in predicting low reynolds, free, turbulent round jet2014In: Journal of Fluids Engineering, ISSN 0098-2202, E-ISSN 1528-901X, Vol. 136, no 1, article id 011201Article in journal (Refereed)
    Abstract [en]

    In order to study the flow behavior of multiple jets, numerical prediction of the three-dimensional domain of round jets from the nozzle edge up to the turbulent region is essential. The previous numerical studies on the round jet are limited to either two-dimensional investigation with Reynolds-averaged Navier-Stokes (RANS) models or three-dimensional prediction with higher turbulence models such as large eddy simulation (LES) or direct numerical simulation (DNS). The present study tries to evaluate different RANS turbulence models in the three-dimensional simulation of the whole domain of an isothermal, low Re (Re = 2125, 3461, and 4555), free, turbulent round jet. For this evaluation the simulation results from two two-equation (low Re k-ε and low Re shear stress transport (SST) k-ω), a transition three-equation (k-kl-ω), and a transition four-equation (SST) eddy-viscosity turbulence models are compared with hot-wire anemometry measurements. Due to the importance of providing correct inlet boundary conditions, the inlet velocity profile, the turbulent kinetic energy (k), and its specific dissipation rate (ω) at the nozzle exit have been employed from an earlier verified numerical simulation. Two-equation RANS models with low Reynolds correction can predict the whole domain (initial, transition, and fully developed regions) of the round jet with prescribed inlet boundary conditions. The transition models could only reach to a good agreement with the measured mean axial velocities and its rms in the initial region. It worth mentioning that the round jet anomaly is still present in the turbulent region of the round jet predicted by the low Re k-ε. By comparing the k and the ω predicted by different turbulence models, the blending functions in the cross-diffusion term is found one of the reasons behind the more consistent prediction by the low Re SST k-ω. 

  • 2.
    Ghahremanian, Shahriar
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Division of Energy Systems, Department of Management and Engineering, Linköping University.
    Moshfegh, Bahram
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Division of Energy Systems, Department of Management and Engineering, Linköping University.
    Investigation in the near-field of a row of interacting jets2015In: Journal of Fluids Engineering, ISSN 0098-2202, E-ISSN 1528-901X, Vol. 137, no 12, article id 121202Article in journal (Refereed)
    Abstract [en]

    Multiple interacting jets (confluent jets) are employed in many engineering applications, and the significant design factors must be investigated. Computational fluid dynamics (CFD) is used to numerically predict the flow field in the proximal region of a single row of round jets. The numerical results that are obtained when using the low Reynolds k-∈ are validated with the experimental data that are acquired by particle image velocimetry (PIV). PIV was used to measure mean velocity and turbulence properties in the proximal region of a row of six parallel coplanar round air jets with equidistant spacing at low Reynolds number (Re = 3290). The low Reynolds k-∈ underpredicts the streamwise velocity in the onset of the jets' decay. The characteristic points are determined for various regions between two neighboring jets. The comparison of the merging point (MP) and the combined point (CP) computed from measurements and simulations shows good agreement in the different regions between the jets. In this study, a computational parametric study is also conducted to determine the main effects of three design factors and the interactions between them on the flow field development using response surface method (RSM). The influences of the inlet velocity, the spacing between the nozzles, and the diameter of the nozzles on the locations of the characteristic points are presented in the form of correlations (regression equations). CFD is used to numerically predict the characteristic points for a set of required studies, for which the design values of the simulation cases are determined by the Box-Behnken method. The results indicate that the spacing between the nozzles has a major impact on the flow characteristics in the near-field region of multiple interacting jets. The RSM shows that the inlet velocity has a marginal effect on the merging and CPs. All of the square terms are removed from the response equations of MP, and only one two-way interaction term between inlet velocity and spacing remains in the regression model with a marginal effect. The square of the nozzle diameter contributes in the regression equations of CP in some regions between the jets.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf