hig.sePublications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gustafsson, Mattias
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Gävle Energi AB, Gävle, Sweden .
    Rönnelid, Mats
    Energy Technology, Högskolan Dalarna, Falun, Sweden.
    Trygg, Louise
    Linköpings universitet.
    Karlsson, Björn
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    CO2 emission evaluation of energy conserving measures in buildings connected to a district heating system: case study of a multi-dwelling building in Sweden2016In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 111, p. 341-350Article in journal (Refereed)
    Abstract [en]

    When taking action to fulfill the directives from the European Union, energy conserving measures will be implemented in the building sector. If buildings are connected to district heating systems, a reduced heat demand will influence the electricity production if the reduced heat demand is covered by combined heat and power plants.

    This study analyze five different energy conserving measures in a multi-dwelling building regarding how they affect the marginal production units in the district heating system in Gävle, Sweden. For CO2 emission evaluations, two different combinations of heat and electricity conserving measures are compared to an installation of an exhaust air heat pump.

    The different energy conserving measures affect the district heating system in different ways. The results show that installing an exhaust air heat pump affects the use/production of electricity in the district heating system most and electricity conserving measures result in reduced use of electricity in the building, reduced use of electricity for production of heat in the district heating system and an increase of electricity production.

    The conclusion is that electricity use in the building is the most important factor to consider when energy conserving measures are introduced in buildings within the district heating system in Gävle.

  • 2.
    Johansson, Maria
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem.
    Söderström, Mats
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem.
    Options for the Swedish steel industry: Energy efficiency measures and fuel conversion2011In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 36, no 1, p. 191-198Article in journal (Refereed)
    Abstract [en]

    The processes of iron and steel making are energy intensive and consume large quantities of electricity and fossil fuels. In order to meet future climate targets and energy prices, the iron and steel industry has to improve its energy and resource efficiency. For the iron and steel industry to utilize its energy resources more efficiently and at the same time reduce its CO2 emissions a number of options are available. In this paper, opportunities for both integrated and scrap-based steel plants are presented and some of the options are electricity production, fuel conversion, methane reforming of coke oven gas and partnership in industrial symbiosis. The options are evaluated from a system perspective and more specific measures are reported for two Swedish case companies: SSAB Strip Products and Sandvik AB. The survey shows that both case companies have great potentials to reduce their CO2 emissions.

  • 3.
    Johansson, Maria T.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy engineering. Department of Management and Engineering, Division of Energy Systems, Linköping University.
    Bio-synthetic natural gas as fuel in steel industry reheating furnaces: A case study of economic performance and effects on global CO2 emissions2013In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 57, p. 699-708Article in journal (Refereed)
    Abstract [en]

    Climate change is of great concern for society today. Manufacturing industries and construction account for approximately 20% of global CO2 emissions and, consequently, it is important that this sector investigate options to reduce its CO2 emissions. One option could be to substitute fossil fuels with renewable alternatives. This paper describes a case study in which four future energy market scenarios predicting 2030 were used to analyse whether it would be profitable for a steel plant to produce bio-SNG (bio-synthetic natural gas) in a biomass gasifier and to substitute LPG (liquefied petroleum gas) with bio-SNG as fuel in reheating furnaces. The effects on global CO2 emissions were analysed from a perspective in which biomass is considered a limited resource. The results from the analysis show that investment in a biomass gasifier and fuel conversion would not be profitable in any of the scenarios. Depending on the scenario, the production cost for bio-SNG ranged between 22 and 36 EUR/GJ. Fuel substitution would reduce global CO2 emission if the marginal biomass user is a producer of transportation fuel. However, if the marginal user of biomass is a coal power plant with wood co-firing, the result would be increased global CO2 emissions.

  • 4.
    Kabanshi, Alan
    et al.
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Ameen, Arman
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Hayati, Abolfazl
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system.
    Yang, Bin
    Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.
    Cooling energy simulation and analysis of an intermittent ventilation strategy under different climates2018In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 156, p. 84-94Article in journal (Refereed)
    Abstract [en]

    Energy use on heating, ventilation and air conditioning (HVAC) accounts for about 50% of building energy use. To have a sustainable built environment, energy efficient ventilation systems that deliver good indoor environmental quality are needed. This study evaluates the cooling energy saving potential of a newly proposed ventilation system called Intermittent Air Jet Strategy (IAJS) and compares its performance against a mixing ventilation (MV) system in a classroom located in three cities with different climates, Singapore with ‘hot and humid’, Ahvaz with ‘hot and dry’ and Lisbon with “moderate” climate. The results show a significant reduction of cooling energy need and flexibility in control strategies with IAJS as a primary system in hot and humid climates like Singapore. Hot and dry climate with short cool periods like Ahvaz show possible application and considerable energy savings with IAJS as a primary system under optimized variable setpoints, but moderate climates have an increased risk of occupant discomfort likely due to increased draft especially during the cool season.  Thus, IAJS as a secondary system that operates only during cooling season may be conducive for moderate climates like Lisbon. Additionally, the results show that supply fan energy savings can also be realized if well implemented. 

  • 5.
    Lidberg, T.
    et al.
    School of Technology and Business Studies, Dalarna University, Falun, Sweden.
    Olofsson, T.
    School of Technology and Business Studies, Dalarna University, Falun, Sweden; Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.
    Trygg, Louise
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Energy system. Department of Management and Engineering, Linköping University, Linköping, Sweden.
    System impact of energy efficient building refurbishment within a district heated region2016In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 106, p. 45-53Article in journal (Refereed)
    Abstract [en]

    The energy efficiency of the European building stock needs to be increased in order to fulfill the climate goals of the European Union. To be able to evaluate the impact of energy efficient refurbishment in matters of greenhouse gas emissions, it is necessary to apply a system perspective where not only the building but also the surrounding energy system is taken into consideration. This study examines the impact that energy efficient refurbishment of multi-family buildings has on the district heating and the electricity production. It also investigates the impact on electricity utilization and emissions of greenhouse gases. The results from the simulation of four energy efficiency building refurbishment packages were used to evaluate the impact on the district heating system. The packages were chosen to show the difference between refurbishment actions that increase the use of electricity when lowering the heat demand, and actions that lower the heat demand without increasing the electricity use. The energy system cost optimization modeling tool MODEST (Model for Optimization of Dynamic Energy Systems with Time-Dependent Components and Boundary Conditions) was used. When comparing two refurbishment packages with the same annual district heating use, this study shows that a package including changes in the building envelope decreases the greenhouse gas emissions more than a package including ventilation measures.

  • 6.
    Malmqvist, Tove
    et al.
    Royal Inst Technol KTH, Stockholm, Sweden.
    Glaumann, Mauritz
    University of Gävle, Faculty of Engineering and Sustainable Development, Department of Building, Energy and Environmental Engineering, Environmental engineering. Royal Inst Technol KTH, Stockholm, Sweden.
    Svenfelt, Åsa
    Royal Inst Technol KTH, Stockholm, Sweden.
    Carlson, Per-Olof
    ACC Glasradgivare AB, Nacka, Sweden.
    Erlandsson, Martin
    IVL Swedish Environm Res Inst, Stockholm, Sweden.
    Andersson, Johnny
    Ramboll Consultants, Stockholm, Sweden.
    Winzell, Helene
    Helene Wintzell AB, Stockholm, Sweden.
    Finnveden, Göran
    Royal Inst Technol KTH, Stockholm, Sweden.
    Lindholm, Torbjörn
    Chalmers, Environm & Energy Dept, Gothenburg, Sweden.
    Malmström, Tor-Göran
    Royal Inst Technol KTH, Dept Bldg Technol, Stockholm, Sweden.
    A Swedish environmental rating tool for buildings2011In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 36, no 4, p. 1893-1899Article in journal (Refereed)
    Abstract [en]

    In 2003, a joint effort between the Swedish government, a number of companies in the building and construction sectors, some municipalities, insurance companies and banks set a target that by 2009, all new buildings and 30% of existing Swedish buildings should be rated using a voluntary environmental rating tool. In a major research programme finished in 2008, a tool was developed to be used in this context. The tool covers three assessment areas: Energy, Indoor environment and Material & Chemicals. These areas are split into 11 aspects with one or a few indicators. Rating criteria are specified for each indicator, stipulating requirements for a rating Gold, Silver, Bronze and Rated. Indicator results can then be aggregated to aspect, area and a single raring for building level for enhanced result communication. The tool builds on previous experiences regarding environmental building rating tools and therefore includes some special characteristics which aim to tackle some of the criticism directed towards the first generation of such tools. At the time of writing, the first buildings have received official ratings and an independent stakeholder group is promoting broader implementation of the tool. (C) 2010 Elsevier Ltd. All rights reserved.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf