hig.sePublikasjoner
Endre søk
Begrens søket
1 - 21 of 21
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ameen, Arman
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Cehlin, Mathias
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Larsson, Ulf
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Karimipanah, Taghi
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Experimental Investigation of Ventilation Performance of Different Air Distribution Systems in an Office Environment: Heating Mode2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 10, artikkel-id 1835Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A vital requirement for all-air ventilation systems are their functionality to operate both in cooling and heating mode. This article experimentally investigates two newly designed air distribution systems, corner impinging jet (CIJV) and hybrid displacement ventilation (HDV) in comparison against a mixing type air distribution system. These three different systems are examined and compared to one another to evaluate their performance based on local thermal comfort and ventilation effectiveness when operating in heating mode. The evaluated test room is an office environment with two workstations. One of the office walls, which has three windows, faces a cold climate chamber. The results show that CIJV and HDV perform similar to a mixing ventilation in terms of ventilation effectiveness close to the workstations. As for local thermal comfort evaluation, the results show a small advantage for CIJV in the occupied zone. Comparing C2-CIJV to C2-CMV the average draught rate (DR) in the occupied zone is 0.3% for C2-CIJV and 5.3% for C2-CMV with the highest difference reaching as high as 10% at the height of 1.7 m. The results indicate that these systems can perform as well as mixing ventilation when used in offices that require moderate heating. The results also show that downdraught from the windows greatly impacts on the overall airflow and temperature pattern in the room.

  • 2.
    Ameen, Arman
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Cehlin, Mathias
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Larsson, Ulf
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Karimipanah, Taghi
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Experimental investigation of ventilation performance of different air distribution systems in an office environment – cooling mode2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 7, artikkel-id 1354Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The performance of a newly designed corner impinging jet air distribution method with an equilateral triangle cross section was evaluated experimentally and compared to that of two more traditional methods (mixing and displacement ventilation). At nine evenly chosen positions with four standard vertical points, air velocity, turbulence intensity, temperature, and tracer gas decay measurements were conducted for all systems. The results show that the new method behaves as a displacement ventilation system, with high air change effectiveness and stratified flow pattern and temperature field. Both local air change effectiveness and air exchange effectiveness of the corner impinging jet showed high quality and promising results, which is a good indicator of ventilation effectiveness. The results also indicate that there is a possibility to slightly lower the airflow rates for the new air distribution system, while still meeting the requirements for thermal comfort and indoor air quality, thereby reducing fan energy usage. The draught rate was also lower for corner impinging jet compared to the other tested air distribution methods. The findings of this research show that the corner impinging jet method can be used for office ventilation.

  • 3.
    Andersen, Niklas
    et al.
    Energi Funktion Komfort Skandinavien AB, Nacka, Sweden.
    Eriksson, Ola
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Hillman, Karl
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Wallhagen, Marita
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Wind turbines’ end-of-life: Quantification and characterisation of future waste materials on a national level2016Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 9, nr 12, artikkel-id 999Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Globally, wind power is growing fast and in Sweden alone more than 3000 turbines have been installed since the mid-1990s. Although the number of decommissioned turbines so far is few, the high installation rate suggests that a similarly high decommissioning rate can be expected at some point in the future. If the waste material from these turbines is not handled sustainably the whole concept of wind power as a clean energy alternative is challenged. This study presents a generally applicable method and quantification based on statistics of the waste amounts from wind turbines in Sweden. The expected annual mean growth is 12% until 2026, followed by a mean increase of 41% until 2034. By then, annual waste amounts are estimated to 240,000 tonnes steel and iron (16% of currently recycled materials), 2300 tonnes aluminium (4%), 3300 tonnes copper (5%), 340 tonnes electronics (<1%) and 28,000 tonnes blade materials (barely recycled today). Three studied scenarios suggest that a well-functioning market for re-use may postpone the effects of these waste amounts until improved recycling systems are in place.

  • 4.
    Arushanyan, Yevgeniya
    et al.
    Division of Environmental Strategies Research, Department of Sustainable development, Environmental Science and Engineering, School of Architecture and Built Environment, KTH Royal Institute of Technology, Stockholm, Sweden.
    Bjorklund, Anna
    Division of Environmental Strategies Research, Department of Sustainable development, Environmental Science and Engineering, School of Architecture and Built Environment, KTH Royal Institute of Technology, Stockholm, Sweden.
    Eriksson, Ola
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Finnveden, Göran
    Division of Environmental Strategies Research, Department of Sustainable development, Environmental Science and Engineering, School of Architecture and Built Environment, KTH Royal Institute of Technology, Stockholm, Sweden.
    Soderman, Maria Ljunggren
    Division of Environmental Systems Analysis, Department of Energy and Environment, Chalmers University of Technology, Göteborg, Sweden.
    Sundqvist, Jan-Olov
    IVL Swedish Environmental Research Institute, Stockholm, Sweden.
    Stenmarck, Åsa
    IVL Swedish Environmental Research Institute, Stockholm, Sweden.
    Environmental Assessment of Possible Future Waste Management Scenarios2017Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, nr 2, artikkel-id 247Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Waste management has developed in many countries and will continue to do so. Changes towards increased recovery of resources in order to meet climate targets and for society to transition to a circular economy are important driving forces. Scenarios are important tools for planning and assessing possible future developments and policies. This paper presents a comprehensive life cycle assessment (LCA) model for environmental assessments of scenarios and waste management policy instruments. It is unique by including almost all waste flows in a country and also allow for including waste prevention. The results show that the environmental impacts from future waste management scenarios in Sweden can differ a lot. Waste management will continue to contribute with environmental benefits, but less so in the more sustainable future scenarios, since the surrounding energy and transportation systems will be less polluting and also because less waste will be produced. Valuation results indicate that climate change, human toxicity and resource depletion are the most important environmental impact categories for the Swedish waste management system. Emissions of fossil CO2 from waste incineration will continue to be a major source of environmental impacts in these scenarios. The model is used for analyzing environmental impacts of several policy instruments including weight based collection fee, incineration tax, a resource tax and inclusion of waste in a green electricity certification system. The effect of the studied policy instruments in isolation are in most cases limited, suggesting that stronger policy instruments as well as combinations are necessary to reach policy goals as set out in for example the EU action plan on circular economy.

  • 5.
    Blomqvist, Stefan
    et al.
    Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Amiri, Shahnaz
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik. Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Rohdin, Patrik
    Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Ödlund, Louise
    Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Analyzing the performance and control of a hydronic pavement system in a district heating network2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 11, artikkel-id 2078Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A hydronic pavement system (HPS) is an alternative method to clear snow and ice, which avoids the use of salt, sand, and fossil fuel in conventional snow clearance, and minimizes the risk of accidents. The aim is to analyze the performance of different control strategies for a 35,000 m2 HPS utilizing heat from a district heating and cooling (DHC) system. The key performance indicators are (1) energy performance of the HPS, and (2) primary energy use, (3) electricity production and (4) greenhouse gas (GHG) emissions from the DHC system. The methodology uses a simulation model of the HPS and an optimization model of the DHC system. Three operational strategies are analyzed: A reference scenario based on the current control strategy, and scenarios where the HPS is shut down at temperatures below −10 ◦C and −5 ◦C. The study shows that the DHC return temperature is suitable for use. By operational strategies, use during peak demand in the DHC system can be avoided, resulting in reduced use of fossil fuel. Moreover, the energy use of the HPS could be reduced by 10% and the local GHG emissions by 25%. The study emphasizes that the HPS may have positive effects on global GHG emissions, as it enables electricity production from renewable resources. 

  • 6.
    Carlander, Jakob
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Trygg, Kristina
    Technology and Social Change, Linköping University, Linköping, Sweden.
    Moshfegh, Bahram
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik. Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Integration of measurements and time diaries as complementary measures to improve resolution of BES2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 11, artikkel-id 2072Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Building energy simulation (BES) models rely on a variety of different input data, and the more accurate the input data are, the more accurate the model will be in predicting energy use. The objective of this paper is to show a method for obtaining higher accuracy in building energy simulations of existing buildings by combining time diaries with data from logged measurements, and also to show that more variety is needed in template values of user input data in different kinds of buildings. The case studied in this article is a retirement home in Linköping, Sweden. Results from time diaries and interviews were combined with logged measurements of electricity, temperature, and CO2 levels to create detailed occupant behavior schedules for use in BES models. Two BES models were compared, one with highly detailed schedules of occupancy, electricity use, and airing, and one using standardized input data of occupant behavior. The largest differences between the models could be seen in energy losses due to airing and in household electricity use, where the one with standardized user input data had a higher amount of electricity use and less losses due to airing of 39% and 99%, respectively. Time diaries and interviews, together with logged measurements, can be great tools to detect behavior that affects energy use in buildings. They can also be used to create detailed schedules and behavioral models, and to help develop standardized user input data for more types of buildings. This will help improve the accuracy of BES models so the energy efficiency gap can be reduced. 

  • 7.
    Eriksson, Ola
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Energy and Waste Management2017Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, nr 7, artikkel-id 1072Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Waste management and energy systems are often interlinked, either directly by waste-to-energy technologies, or indirectly as processes for recovery of resources-such as materials, oils, manure, or sludge-use energy in their processes or substitute conventional production of the commodities for which the recycling processes provide raw materials. A special issue in Energies on the topic of “ Energy andWaste Management” attained a lot of attention from the scientific community. In particular, papers contributing to improved understanding of the combined management of waste and energy were invited. In all, 9 papers were published out of 24 unique submissions. The papers cover technical topics such as leaching of heavy metals, pyrolysis, and production of synthetic natural gas in addition to different systems assessments of horse manure, incineration, and complex future scenarios at a national level. All papers except one focused on energy recovery from waste. That particular paper focused on waste management of infrastructure in an energy system (wind turbines). Published papers illustrate research in the field of energy and waste management on both a current detailed process level as well as on a future system level. Knowledge gained on both types is necessary to be able to make progress towards a circular economy.

  • 8.
    Eriksson, Ola
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Finnveden, Göran
    Division of Environmental Strategies Research-fms, Department of Sustainable Development, Environmental Sciences and Engineering (SEED), School of Architecture and the Built Environment, KTH Royal Institute of Technology, Stockholm, Sweden.
    Energy Recovery from Waste Incineration: The Importance of Technology Data and System Boundaries on CO2 Emissions2017Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, nr 4, artikkel-id 539Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Previous studies on waste incineration as part of the energy system show that waste management and energy supply are highly dependent on each other, and that the preconditions for the energy system setup affects the avoided emissions and thereby even sometimes the total outcome of an environmental assessment. However, it has not been previously shown explicitly which key parameters are most crucial, how much each parameter affects results and conclusions and how different aspects depend on each other. The interconnection between waste incineration and the energy system is elaborated by testing parameters potentially crucial to the result: design of the incineration plant, avoided energy generation, degree of efficiency, electricity efficiency in combined heat and power plants (CHP), avoided fuel, emission level of the avoided electricity generation and avoided waste management. CO2 emissions have been calculated for incineration of 1 kWh mixed combustible waste. The results indicate that one of the most important factors is the electricity efficiency in CHP plants in combination with the emission level of the avoided electricity generation. A novel aspect of this study is the plant by plant comparison showing how different electricity efficiencies associated with different types of fuels and plants influence results. Since waste incineration typically have lower power to fuel ratios, this has implications for further analyses of waste incineration compared to other waste management practises and heat and power production technologies. New incineration capacity should substitute mixed landfill disposal and recovered energy should replace energy from inefficient high polluting plants. Electricity generation must not be lost, as it has to be compensated for by electricity production affecting the overall results.

  • 9.
    Eriksson, Ola
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Hadin, Åsa
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Hennessy, Jay
    SP Technical Research Institute of Sweden, Borås, Sweden; University of Mälardalen, Västerås, Sweden.
    Jonsson, Daniel
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Life cycle assessment of horse manure treatment2016Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 9, nr 12, artikkel-id 1011Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Horse manure consists of feces, urine, and varying amounts of various bedding materials. The management of horse manure causes environmental problems when emissions occur during the decomposition of organic material, in addition to nutrients not being recycled. The interest in horse manure undergoing anaerobic digestion and thereby producing biogas has increased with an increasing interest in biogas as a renewable fuel. This study aims to highlight the environmental impact of different treatment options for horse manure from a system perspective. The treatment methods investigated are: (1) unmanaged composting; (2) managed composting; (3) large-scale incineration in a waste-fired combined heat and power (CHP) plant; (4) drying and small-scale combustion; and (5) liquid anaerobic digestion with thermal pre-treatment. Following significant data uncertainty in the survey, the results are only indicative. No clear conclusions can be drawn regarding any preference in treatment methods, with the exception of their climate impact, for which anaerobic digestion is preferred. The overall conclusion is that more research is needed to ensure the quality of future surveys, thus an overall research effort from horse management to waste management.

  • 10.
    Gomes, João
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Assessment of the Impact of Stagnation Temperatures in Receiver Prototypes of C-PVT Collectors2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 15, s. 2967-2967Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Concentrating Photovoltaic Thermal (C-PVT) solar collectors produce both thermal and electric power from the same area while concentrating sunlight. This paper studies a C-PVT design where strings of series-connected solar cells are encapsulated with silicone in an aluminium receiver, inside of which the heat transfer fluid flows, and presents an evaluation on structural integrity and performance, after reaching stagnation temperatures. Eight test receivers were made, in which the following properties were varied: Size of the PV cells, type of silicone used to encapsulate the cells, existence of a strain relief between the cells, size of the gap between cells, and type of cell soldering (line or point). The test receivers were placed eight times in an oven for one hour at eight different monitored temperatures. The temperature of the last round was set at 220 °C, which exceeds the highest temperature the panel design reaches. Before and after each round in the oven, the following tests were conducted to the receivers: Electroluminescence (EL) test, IV-curve tracing, diode function, and visual inspection. The test results showed that the receivers made with the transparent silicone and strain relief between cells experienced less microcracks and lower power degradation. No prototype test receiver lost more than 30% of its initial power, despite some receivers displaying a large number of cell cracks. The transparent and more elastic silicone is better at protecting the solar cells from the mechanical stress of thermal expansion than the compared silicone alternative, which was stiffer. As expected, larger cells are more prone to develop microcracks after exposure to thermal stress. Additionally, existing microcracks tend to grow in size relatively fast under thermal stress. EL imaging taken during our experiment leads us to conclude that it is far more likely for existing cracks to expand than for new cracks to appear. [ABSTRACT FROM AUTHOR]

  • 11.
    Gustafsson, Mattias
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Energisystem.
    Thygesen, Richard
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Energisystem.
    Karlsson, Björn
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Energisystem.
    Ödlund, Louise
    Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Rev-Changes in Primary Energy Use and CO2 Emissions: An Impact Assessment for a Building with Focus on the Swedish Proposal for Nearly Zero Energy Buildings2017Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, nr 7, artikkel-id 978Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the European Union's Energy Performance of Buildings Directive, the energy efficiency goal for buildings is set in terms of primary energy use. In the proposal from the National Board of Housing, Building, and Planning, for nearly zero energy buildings in Sweden, the use of primary energy is expressed as a primary energy number calculated with given primary energy factors. In this article, a multi-dwelling building is simulated and the difference in the primary energy number is investigated when the building uses heat from district heating systems or from heat pumps, alone or combined with solar thermal or solar photovoltaic systems. It is also investigated how the global CO2 emissions are influenced by the different energy system combinations and with different fuels used. It is concluded that the calculated primary energy number is lower for heat pump systems, but the global CO2 emissions are lowest when district heating uses mostly biofuels and is combined with solar PV systems. The difference is up to 140 tonnes/year. If the aim with the Swedish building code is to decrease the global CO2 emissions then the ratio between the primary energy factors for electricity and heat should be larger than three and considerably higher than today.

  • 12.
    Hadin, Åsa
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Hillman, Karl
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Eriksson, Ola
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Miljöteknik.
    Prospects for Increased Energy Recovery from Horse Manure: A Case Study of Management Practices, Environmental Impact and Costs2017Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, nr 12, artikkel-id 1935Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A transition to renewable energy sources and a circular economy has increased interest in renewable resources not usually considered as energy sources or plant nutrient resources. Horse manure exemplifies this, as it is sometimes recycled but not often used for energy purposes. The purpose of this study was to explore horse manure management in a Swedish municipality and prospects for energy recovery. The case study includes a survey of horse manure practices, environmental assessment of horse manure treatment in a biogas plant, including associated transport, compared to on-site unmanaged composting, and finally a simplified economic analysis. It was found that horse manure management was characterized by indoor collection of manure most of the year and storage on concrete slabs or in containers, followed by direct application on arable land. Softwood was predominantly used as bedding, and bedding accounted for a relatively small proportion (13%) of the total mix. Anaerobic digestion was indicated to reduce potential environmental impact in comparison to unmanaged composting, mainly due to biogas substituting use of fossil fuels. The relative environmental impact from transport of manure from horse facilities to anaerobic digestion plant was small. Results also indicate a relatively high cost for horse keepers to change from composting on site to anaerobic digestion in a centralized plant.

  • 13.
    Johansson, Ida
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Mardan, Nawzad
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Cornelis, Erwin
    Tractebel Engineering S.A., Brussels, Belgium.
    Kimura, Osamu
    Socio-Economic Research Center, Central Research Institute of Electric Power Industry, Tokyo, Japan.
    Thollander, Patrik
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Designing Policies and Programmes for Improved Energy Efficiency in Industrial SMEs2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 7, artikkel-id 1338Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Climate change, due to anthropogenic emissions of greenhouse gases, is driving policymakers to make decisions to promote more efficient energy use. Improved industrial energy efficiency is said to play a key role in the transition to more carbon-neutral energy systems. In most countries, industrial small and medium-sized enterprises (SMEs) represent 95% or more of the total number of companies. Thus, SMEs, apart from using energy, are a major driver in the economy with regard to innovation, GDP growth, employment, investments, exports, etc. Despite this, research and policy activities related to SMEs have been scarce, calling for contributions in the field. Therefore, the aim of this paper is to critically assess how adequate energy efficiency policy programmes for industrial SMEs could be designed. Results show that scientific publications in the field differ in scope and origin, but a major emphasis of the scientific papers has been on barriers to and drivers for energy efficiency. Scientific contributions from studies of energy policy programmes primarily cover energy audit programmes and show that the major energy efficiency measures from industrial SMEs are found in support processes. The review further reveals an imbalance in geographic scope of the papers within the field, where a vast majority of the papers emanate from Europe, calling for scientific publications from other parts of the world. The study synthesizes the findings into a general method on how to design efficiency programs for the sector.

  • 14.
    La Fleur, Lina
    et al.
    Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Rohdin, Patrik
    Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Moshfegh, Bahram
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik. Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Energy renovation versus demolition and construction of a new building—a comparative analysis of a Swedish multi-family building2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 11, artikkel-id 2218Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study addresses the life cycle costs (LCC) of energy renovation, and the demolition and construction of a new building. A comparison is made between LCC optimal energy renovations of four different building types with thermal performance, representing Swedish constructions from the 1940s, 1950s, 1960s, and 1970s, as well as the demolition of the building and construction of a new building that complies with the Swedish building code. A Swedish multi-family building from the 1960s is used as a reference building. LCC optimal energy renovations are identified with energy saving targets ranging between 10% and 70%, in addition to the lowest possible life cycle cost. The analyses show that an ambitious energy renovation is not cost-optimal in any of the studied buildings, if achieving the lowest LCC is the objective function. The cost of the demolition and construction of a new building is higher compared to energy renovation to the same energy performance. The higher rent in new buildings does not compensate for the higher cost of new construction. A more ambitious renovation is required in buildings that have a shape factor with a high internal volume to heated floor area ratio. © 2019 by the authors.

  • 15.
    Lane, Anna-Lena
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik. RISE Research Institutes of Sweden.
    Boork, Magdalena
    RISE Research Institutes of Sweden.
    Thollander, Patrik
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Barriers, driving forces and non-energy benefits for battery storage in photovoltaic (PV) systems in modern agriculture2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 18, artikkel-id 3568Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Battery storage has been highlighted as one way to increase the share of renewables in energy systems. The use of local battery storage is also beneficial when reducing power variations in the grid, thereby contributing to more robust and cost-effective energy systems. The purpose of this paper is to investigate barriers, drivers and non-energy benefits (NEB) for investments in battery storage in photovoltaic systems (PV) in the context of farmers with PV systems in Sweden. The study is based on a questionnaire about barriers, driving forces and NEB for investment in battery storage connected to PV. The questionnaire was sent to farmers in Sweden who already have photovoltaics installed and about 100 persons answered, a response rate of 59%. The major barriers found are related to the technical and economic risks of investing in battery storage. One of the main conclusions is that the highest-ranked driver, i.e., to use a larger part of the produced electricity oneself, turns out to be the highest priority for the grid-owner seeking to reduce the need for extensive investments in the grid. The primary NEBs found were the possibility of becoming independent from grid electricity.

  • 16.
    Lundström, Lukas
    et al.
    Mälardalens högskola, Framtidens energi, Västerås, Sweden; Eskilstuna Kommunfastighet AB, Eskilstuna, Sweden.
    Akander, Jan
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik.
    Zambrano, Jesus
    Mälardalens högskola, Framtidens energi, Västerås, Sweden.
    Development of a space heating model suitable for the automated model generation of existing multifamily buildings: a case study in Nordic climate2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 3, artikkel-id 485Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Building energy performance modeling is essential for energy planning, management, and efficiency. This paper presents a space heating model suitable for auto-generating baseline models of existing multifamily buildings. Required data and parameter input are kept within such a level of detail that baseline models can be auto-generated from, and calibrated by, publicly accessible data sources. The proposed modeling framework consists of a thermal network, a typical hydronic radiator heating system, a simulation procedure, and data handling procedures. The thermal network is a lumped and simplified version of the ISO 52016-1:2017 standard. The data handling consists of procedures to acquire and make use of satellite-based solar radiation data, meteorological reanalysis data (air temperature, ground temperature, wind, albedo, and thermal radiation), and pre-processing procedures of boundary conditions to account for impact from shading objects, window blinds, wind- and stack-driven air leakage, and variable exterior surface heat transfer coefficients. The proposed model was compared with simulations conducted with the detailed building energy simulation software IDA ICE. The results show that the proposed model is able to accurately reproduce hourly energy use for space heating, indoor temperature, and operative temperature patterns obtained from the IDA ICE simulations. Thus, the proposed model can be expected to be able to model space heating, provided by hydronic heating systems, of existing buildings to a similar degree of confidence as established simulation software. Compared to IDA ICE, the developed model required one-thousandth of computation time for a full-year simulation of building model consisting of a single thermal zone. The fast computation time enables the use of the developed model for computation time sensitive applications, such as Monte-Carlo-based calibration methods. 

  • 17.
    Monjurul Hasan, A. S. M.
    et al.
    Department of Electrical and Electronic Engineering, Bangladesh Army International University of Science and Technology, Cumilla, Bangladesh.
    Rokonuzzaman, M.
    Institute for Intelligent Systems Research and Innovation, Deakin University, Victoria, Australia.
    Tuhin, R. A.
    Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh.
    Salimullah, S. Md.
    Department of Electrical and Electronic Engineering, Bangladesh Army International University of Science and Technology, Cumilla, Bangladesh.
    Ullah, M.
    Department of Electrical and Electronic Engineering, Bangladesh Army International University of Science and Technology, Cumilla, Bangladesh.
    Sakib, T. H.
    Department of Electrical and Electronic Engineering, Bangladesh Army International University of Science and Technology, Cumilla, Bangladesh.
    Thollander, Patrik
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik. Division of Energy Systems, Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Drivers and barriers to industrial energy efficiency in textile industries of Bangladesh2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 9, artikkel-id 1775Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bangladesh faced a substantial growth in primary energy demand in the last few years. According to several studies, energy generation is not the only means to address energy demand; efficient energy management practices are also very critical. A pertinent contribution in the energy management at the industrial sector ensures the proper utilization of energy. Energy management and its efficiency in the textile industries of Bangladesh are studied in this paper. The outcomes demonstrate several barriers to energy management practices which are inadequate technical cost-effective measures, inadequate capital expenditure, and poor research and development. However, this study also demonstrates that the risk of high energy prices in the future, assistance from energy professionals, and an energy management scheme constitute the important drivers for the implementation of energy efficiency measures in the studied textile mills. The studied textile industries seem unaccustomed to the dedicated energy service company concept, and insufficient information regarding energy service companies (ESCOs) and the shortage of trained professionals in energy management seem to be the reasons behind this. This paper likewise finds that 3–4% energy efficiency improvements can be gained with the help of energy management practices in these industries. 

  • 18.
    Ramirez Villegas, Ricardo
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Energisystem och byggnadsteknik. School of Technology and Business Studies, Dalarna University, Falun, Sweden.
    Eriksson, Ola
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Miljövetenskap.
    Olofsson, Thomas
    Department of Applied Physics and Electronics, Umeå University, 90187 Umeå, Sweden.
    Life Cycle Assessment of Building Renovation Measures: Trade-off between Building Materials and Energy2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 3, artikkel-id 344Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The scope of this study is to assess how different energy efficient renovation strategies affect the environmental impacts of a multi-family house in a Nordic climate within district heating systems. The European Union has set ambitious targets to reduce energy use and greenhouse gas emissions by the year 2030. There is special attention on reducing the life cycle emissions in the buildings sector. However, the focus has often been on new buildings, although existing buildings represent great potential within the building stock in Europe. In this study, four different renovation scenarios were analyzed with the commercially available life cycle assessment software that follows the European Committee for Standardization (CEN) standard. This study covers all life cycle steps from the cradle to the grave for a residential building in Borlange, Sweden, where renewable energy dominates. The four scenarios included reduced indoor temperature, improved thermal properties of building material components and heat recovery for the ventilation system. One finding is that changing installations gives an environmental impact comparable to renovations that include both ventilation and building facilities. In addition, the life cycle steps that have the greatest environmental impact in all scenarios are the operational energy use and the building and installation processes. Renovation measures had a major impact on energy use due to the cold climate and low solar irradiation in the heating season. An interesting aspect, however, is that the building materials and the construction processes gave a significant amount of environmental impact.

  • 19.
    Ramírez-Villegas, Ricardo
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Miljövetenskap. School of Technology and Business Studies, Dalarna University, Falun, Sweden.
    Eriksson, Ola
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, Miljövetenskap.
    Olofsson, Thomas
    Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.
    Combined Environmental and Economic Assessment of Energy Efficiency Measures in a Multi-Dwelling Building2019Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 12, nr 13, artikkel-id 2484Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The aim of this study is to assess how different renovation scenarios affect the environmental and economic impacts of a multi-dwelling building in a Nordic climate, how these aspects are correlated and how different energy carriers affect different environmental impact categories. In order to reduce greenhouse gas emissions, the European Union has set an agenda in order to reduce energy use in buildings. New buildings on the European market have a low replacement rate, which makes building renovation an important factor for achieving the European Union goals. In this study, eight renovation strategies were analyzed following the European Committee for Standardization standards for life cycle assessment and life cycle costs of buildings. This study covers all life cycle steps from cradle to grave. The renovation scenarios include combinations of photovoltaics, geothermal heat pumps, heat recovery ventilation and improved building envelopes. Results show that, depending on the energy carrier, reductions in global warming potential can be achieved at the expense of an increased nuclear waste disposal. It also shows that for the investigated renovation strategies in Sweden there is no correlation between the economic and the environmental performance of the building. Changing energy carriers in Sweden in order to reduce greenhouse gas emissions can be a good alternative, but it makes the system more dependent on nuclear power.

  • 20.
    Thollander, Patrik
    et al.
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Energisystem. Department of Management and Engineering, Division of Energy Systems, Linköping University, Linköping, Sweden.
    Palm, Jenny
    Department of Thematic Studies—Technology and Social Change, Linköping University, Linköping, Sweden.
    Industrial Energy Management Decision Making for Improved Energy Efficiency: €”Strategic System Perspectives and Situated Action in Combination2015Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 8, nr 6, s. 5694-5703Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Improved industrial energy efficiency is a cornerstone in climate change mitigation. Research results suggest that there is still major untapped potential for improved industrial energy efficiency. The major model used to explain the discrepancy between optimal level of energy efficiency and the current level is the barrier model, e.g., different barriers to energy efficiency inhibit adoption of cost-effective measures. The measures outlined in research and policy action plans are almost exclusively technology-oriented, but great potential for energy efficiency improvements is also found in operational measures. Both technology and operational measures are combined in successful energy management practices. Most research in the field of energy management is grounded in engineering science, and theoretical models on how energy management in industry is carried out are scarce. One way to further develop and improve energy management, both theoretically as well as practically, is to explore how a socio-technical perspective can contribute to this understanding. In this article we will further elaborate this potential of cross-pollinating these fields. The aim of this paper is to relate energy management to two theoretical models, situated action and transaction analysis. We conclude that the current model for energy management systems, the input-output model, is insufficient for understanding in-house industrial energy management practices. By the incorporation of situated action and transaction analysis to the currently used input-output model, an enhanced understanding of the complexity of energy management is gained. It is not possible to find a single energy management solution suitable for any industrial company, but rather the idea is to find a reflexive model that can be adjusted from time to time. An idea for such a reflexive model would contain the structural elements from energy management models with consideration for decisions being situated and impossible to predict.

  • 21.
    Torres, João Paulo N.
    et al.
    Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
    Fernandes, Carlos A. F.
    Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
    Gomes, João
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Energisystem.
    Luc, Bonfiglio
    Ecole Polytechnique Universitaire de Montpellier, Montpellier, France.
    Carine, Giovinazzo
    Ecole Polytechnique Universitaire de Montpellier, Montpellier, France.
    Olsson, Olle
    Högskolan i Gävle, Akademin för teknik och miljö, Avdelningen för bygg- energi- och miljöteknik, Energisystem.
    Branco, P. J. Costa
    Associated Laboratory for Energy, Transports and Aeronautics, Institute of Mechanical Engineering (LAETA, IDMEC), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
    Effect of reflector geometry in the annual received radiation of low concentration photovoltaic systems2018Inngår i: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 11, nr 7, artikkel-id 1878Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Solar concentrator photovoltaic collectors are able to deliver energy at higher temperatures for the same irradiances, since they are related to smaller areas for which heat losses occur. However, to ensure the system reliability, adequate collector geometry and appropriate choice of the materials used in these systems will be crucial. The present work focuses on the re-design of the Concentrating Photovoltaic system (C-PV) collector reflector presently manufactured by the company Solarus, together with an analysis based on the annual assessment of the solar irradiance in the collector. An open-source ray tracing code (Soltrace) is used to accomplish the modelling of optical systems in concentrating solar power applications. Symmetric parabolic reflector configurations are seen to improve the PV system performance when compared to the conventional structures currently used by Solarus. The parabolic geometries, using either symmetrically or asymmetrically placed receivers inside the collector, accomplished both the performance and cost-effectiveness goals: for almost the same area or costs, the new proposals for the PV system may be in some cases 70% more effective as far as energy output is concerned.

1 - 21 of 21
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard-cite-them-right
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • sv-SE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • de-DE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf